全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于宽范围动态植被指数的高分四土壤湿度反演
GF4 Soil Moisture Inversion Based on Wide Range Dynamic Vegetation Index

DOI: 10.12677/AAM.2022.1112935, PP. 8874-8883

Keywords: 高分四号,土壤湿度,PDI,MPDI,VAPDI,WRDVI,多元线性回归
GF-4
, Soil Moisture, PDI, MPDI, VAPDI, WRDVI, Multiple Linear Regression

Full-Text   Cite this paper   Add to My Lib

Abstract:

土壤水分(SM)在农业生产、大气科学和环境监测中具有重要作用。为克服植被覆盖对SM探测的影响,众多基于归一化植被指数(NDVI)的干旱指数模型先后被提出。然而,NDVI在中高度植被覆盖区域易发生饱和,从而有可能降低SM的反演精度。为充分发挥高分四高时空分辨率的优势,以高分四红光波段反射率(Rred)、近红外波段反射率(Rnir)和宽范围动态植被指数(WRDVI)为解释变量,SM实测值为因变量,采用多元线性回归建立了贵阳市SM反演模型(下称MLR_W),并将MLR_W模型与基于垂直干旱指数(PDI)、改进型垂直干旱指数(MPDI)和植被调整垂直干旱指数(VAPDI)的一元线性回归模型(下分别称SM_P、SM_M和SM_V模型),以及以Rred、Rnir和NDVI为解释变量的多元线性回归模型(下分别称MLR_N)的建模精度和SM反演精度进行了比较分析。实验结果表明:由于顾及了中高度植被覆盖的影响,MLR_W较SM_P、SM_M、SM_V和MLR_N模型取得了更高的模型拟合精度,模型拟合平均绝对误差(MAE)和均方根误差(RMSE)分别为5.05%和6.38%;MLR_W模型SM预测精度高于除SM_M外的其他三种模型,SM反演的MAE和RMSE分别为5.17%和6.29%。但由于MLR_W模型无需确定土壤线,实际工作中较SM_M更易于实施。
Soil moisture (SM) plays an important role in agricultural production, atmospheric science and en-vironmental monitoring. In order to overcome the influence of vegetation coverage on SM detection, many drought index models based on Normalized Difference Vegetation Index (NDVI) have been proposed. However, NDVI is prone to saturation in the medium-high vegetation cover area, which may reduce the inversion accuracy of SM. In order to give full play to the advantage of GF4’s high spatio-temporal resolution, the SM inversion model of Guiyang City (hereinafter referred to as MLR_W) was established by multiple linear regression with GF4’s red spectral reflectance (Rred), near infrared spectral reflectance (Rnir) and Wide Range Dynamic Vegetation Index (WRDVI) as ex-planatory variables and the measured SM value as dependent variable. The MLR_W model is com-bined with a unitary linear regression model based on Perpendicular Drought Index (PDI), Modified Perpendicular Drought Index (MPDI) and Vegetation Adjusted Perpendicular Drought Index (VAPDI) (hereinafter referred to as SM_P, SM_M and SM_V models respectively). The experimental results show that MLR_W has a higher model fitting accuracy than SM_P, SM_M, SM_V and MLR_N, and the mean absolute error (MAE) and root mean square error (RMSE) of the model are 5.05% and 6.38%, respectively. The prediction accuracy of MLR_W model SM is higher than that of the other three models except SM_M. MAE and RMSE of SM inversion are 5.17% and 6.29%, respectively. But due to MLR_The W model does not need to determine the soil line, which is more SM_ M is easier to implement.

References

[1]  Sun, Y., Huang, S., Ma, J., et al. (2017) Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using in Situ Data. Remote Sensing, 9, 292.
https://doi.org/10.3390/rs9030292
[2]  王思楠, 李瑞平, 吴英杰, 等. 基于环境变量和机器学习的土壤水分反演模型研究[J]. 农业机械学报, 2022, 53(5): 332-341.
[3]  黄友昕, 刘修国, 沈永林, 等. 农业干旱遥感监测指标及其适应性评价方法研究进展[J]. 农业工程学报, 2015, 31(16): 186-195.
[4]  Zeng, J., Li, Z., Chen, Q., et al. (2015) Evaluation of Remotely Sensed and Reanalysis Soil Moisture Products over the Tibetan Plateau Using In-Situ Observations. Remote Sensing of Environment, 163, 91-110.
https://doi.org/10.1016/j.rse.2015.03.008
[5]  刘英, 岳辉, 李遥, 等. 基于MODIS的河南省春旱遥感监测[J]. 干旱地区农业研究, 2018, 36(3): 218-223.
[6]  杨彦荣, 胡国强. 基于植被供水指数的旱区土壤湿度反演方法研究[J]. 现代电子技术, 2019, 42(2): 138-142.
[7]  晏红波, 周国清. 地表土壤湿度光学遥感反演方法研究进展[J]. 亚热带资源与环境学报, 2017, 12(2): 82-89.
[8]  Jiang, Z., Huete, A., Didan, K., et al. (2008) Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sensing of Environment, 112, 3833-3845.
https://doi.org/10.1016/j.rse.2008.06.006
[9]  Ghulam, A., Qin, Q. and Zhan, Z. (2007) Designing of the Perpen-dicular Drought Index. Environmental Geology, 52, 1045-1052.
https://doi.org/10.1007/s00254-006-0544-2
[10]  Ghulam, A., Qin, Q., Teyip, T., et al. (2007) Modified Perpendic-ular Drought Index (MPDI): A Real-Time Drought Monitoring Method. ISPRS Journal of Photogrammetry and Remote Sensing, 62, 150-164.
https://doi.org/10.1016/j.isprsjprs.2007.03.002
[11]  吴春雷, 秦其明, 李梅, 等. 基于光谱特征空间的农田植被区土壤湿度遥感监测[J]. 农业工程学报, 2014, 30(16): 106-112.
[12]  张月, 王鸿斌, 王一凡, 等. 基于植被指数的藏北牧区土壤湿度反演[J]. 农业工程学报, 2016, 32(6): 149-154.
[13]  李喆, 谭德宝, 崔远来, 等. 基于PDI的湖北漳河灌区土壤含水量遥感监测[J]. 人民长江, 2010, 41(1): 92-95.
[14]  杨学斌, 秦其明, 姚云军, 等. PDI与MPDI在内蒙古干旱监测中的应用和比较[J]. 武汉大学学报(信息科学版), 2011, 36(2): 195-198.
[15]  谭建灿, 毛克彪, 左志远, 等. 基于卷积神经网络和AMSR2微波遥感的土壤水分反演研究[J]. 高技术通讯, 2018, 28(5): 399-408.
[16]  薛晓萍, 王新, 张丽娟, 等. 基于支持向量机方法建立土壤湿度预测模型的探讨[J]. 土壤通报, 2007(3): 427-433.
[17]  李平湘, 刘致曲, 杨杰, 等. 利用随机森林回归进行极化SAR土壤水分反演[J]. 武汉大学学报(信息科学版), 2019, 44(3): 405-412.
[18]  饶月明, 王川, 黄华国. 联合多源遥感数据监测四川木里县森林火灾[J]. 遥感学报, 2020, 24(5): 559-570.
[19]  吴玮. 高分四号卫星在溃决型洪水灾害监测评估中的应用[J]. 航天器工程, 2019, 28(2): 134-140.
[20]  张伟, 赵理君, 唐娉, 等. 一种利用多时相GF-4影像的快速水体提取方法[J]. 遥感信息, 2018, 33(4): 108-114.
[21]  王中挺, 张玉环, 袁淑云, 等. 利用高分四号数据监测“京津冀”地区陆地气溶胶[J]. 环境与可持续发展, 2016, 41(5): 113-116.
[22]  冷建飞, 高旭, 朱嘉平. 多元线性回归统计预测模型的应用[J]. 统计与决策, 2016(7): 82-85.
[23]  Gitelson, A.A. (2004) Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. Journal of Plant Physiology, 161, 165-173.
https://doi.org/10.1078/0176-1617-01176
[24]  秦其明, 游林, 赵越, 等. 基于二维光谱特征空间的土壤线自动提取算法[J]. 农业工程学报, 2012, 28(3): 167-171.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133