|
Material Sciences 2022
橘皮基多孔生物炭材料的制备及超级电容器性能研究
|
Abstract:
本研究以废弃林作物橘皮为原材料,采用热分解法结合化学活化改性技术,成功制备橘皮基多孔生物炭材料(KC)。本文分析了生物炭材料的微观形貌和孔结构,利用电化学工作站对材料进行了循环伏安、恒流充放电和交流阻抗等测试。结果表明:KC具有多维度、多层次、多孔隙的微结构,比表面积高达1630 m2?g?1。KC表现出优异的双层电容特性,在1 A/g的电流密度下,比电容为230 F/g。并且,当电流密度为20 A/g时,其比电容仍维持在184 F/g,表现出优异的倍率性能。
In this study, orange peel-based porous carbon material (KC) was successfully prepared by thermal de-composition combined with chemical activation modification technology using discarded forest crop orange peel as raw material. This study analyzed the surface structure and microstructure of po-rous carbon material. Cyclic voltammetry, constant current charge-discharge and AC impedance were measured by the electrochemical workstation. The results reveal that KC has a mul-ti-dimensional, multi-level and porous morphological structure with a specific surface area of up to 1630 m2?g?1. KC exhibits excellent double-layer capacitance characteristics, with a specific capaci-tance of 230 F/g at a current density of 1 A/g. Moreover, when the current density is 20 A/g, the specific capacitance remains at 184 F/g, showing excellent multiplier performance.
[1] | Huang, Z.Y., Qi, X. and Zhong, J.X. (Eds.) (2021) 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene. CRC Press, Boca Raton. https://doi.org/10.1201/9781003207122 |
[2] | Lu, C., Huang, Y.H., Wu, Y.J., Li, J. and Cheng, J.P. (2018) Camellia Pollen-Derived Carbon for Supercapacitor Electrode Material. Journal of Power Sources, 394, 9-16. https://doi.org/10.1016/j.jpowsour.2018.05.032 |
[3] | Xiang, Y.J., Yang, X., Xu, Z.Y., et al. (2020) Fabrication of Sustainable Manganese Ferrite Modified Biochar from Vinasse for Enhanced Adsorp-tion of Fluoroquinolone Antibiotics: Effects and Mechanisms. Science of the Total Environment, 709, Article ID: 136079. https://doi.org/10.1016/j.scitotenv.2019.136079 |
[4] | Yang, X., Wan, Y., Zheng, Y., et al. (2019) Surface Func-tional Groups of Carbon-Based Adsorbents and Their Roles in the Removal of Heavy Metals from Aqueous Solutions: A Critical Review. Chemical Engineering Journal, 366, 608-621. https://doi.org/10.1016/j.cej.2019.02.119 |
[5] | Luo, L., Xu, C., Chen, Z.E. and Zhang, S.Z. (2015) Properties of Biomass-Derived Biochars: Combined Effects of Operating Conditions and Biomass Types. Bioresource Technology, 192, 83-89.
https://doi.org/10.1016/j.biortech.2015.05.054 |
[6] | 孙中新. 基于杉树皮的多级孔碳材料的制备及其在超级电容器中的应用[D]: [博士学位论文]. 广州: 华南农业大学, 2018. |
[7] | 汪萍. 几种农业废弃物生物炭的制备及其超级电容器性能研究[D]: [博士学位论文]. 武汉: 华中农业大学, 2020. |
[8] | 李乐媛. 生物质基制备超级活性碳及其电化学性能研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2019. |
[9] | 蒋孝晨. 花生壳活性炭电极材料的制备与改性及其电化学特性[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2020. |
[10] | 王芳平, 马婧, 李小亚, 等. 板栗壳生物炭高性能对称性超级电容器电极材料的制备及性能[J]. 化工进展, 2021, 40(8): 4381-4387. |