全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铌酸镁锂微波介质陶瓷的研究进展
Research Progress of Li3Mg2NbO6 Microwave Dielectric Ceramics

DOI: 10.12677/MS.2022.1212145, PP. 1302-1308

Keywords: 微波介质陶瓷,介电常数,铌酸镁锂,改性研究
Microwave Dielectric Ceramics
, Dielectric Constant, Research Progress of Li3Mg2NbO6, Modification Studies

Full-Text   Cite this paper   Add to My Lib

Abstract:

岩盐型微波介质陶瓷具有优异的介电性能,具有岩盐结构的Li3Mg2NbO6微波介质陶瓷因其良好的综合特性成为近年来的研究热点之一。本文总结了近几年Li3Mg2NbO6微波介质陶瓷的研究情况,系统介绍了微波介质陶瓷的分类和Li3Mg2NbO6微波介质陶瓷的介电性能,分析了Li3Mg2NbO6陶瓷在烧结过程中存在的问题,并提出了针对其改性研究的几种方法,最后对该种陶瓷的研究方向进行了展望。
The rock-salt microwave dielectric ceramics have excellent dielectric properties, and Li3Mg2NbO6 microwave dielectric ceramics with rock-salt structure have become one of the research hotspots in recent years because of their good comprehensive characteristics. This paper summarizes the research on Li3Mg2NbO6 microwave dielectric ceramics in recent years, systematically introduces the classification of microwave dielectric ceramics and the dielectric properties of Li3Mg2NbO6 microwave dielectric ceramics, analyzes the problems in the sintering process of Li3Mg2NbO6 ceramics and proposes several methods for its modification, and finally gives an outlook on the research direction of this type of ceramics.

References

[1]  吕学鹏, 郑勇, 周斌, 程鹏. 微波介质陶瓷低温共烧技术的研究进展[J]. 材料导报A: 综述篇, 2012, 26(12): 146-154.
[2]  郑振中, 甘国友, 严继康, 郭宏政, 唐荣梅, 王立惠. 低温共烧(LTCC)微波介质陶瓷的研究进展[J]. 材料导报, 2008, 22(6): 322-328.
[3]  贾琳蔚, 李晓云, 丘泰, 贾杪蕾. 微波介质陶瓷分类及各体系研究进展[J]. 材料导报, 2008, 22(4): 10-13.
[4]  Freer, R. and Azough, F. (2008) Microstructure Engineering of Microwave Dielectric Ceramics. Journal of the European Ceramics Society, 28, 1433-1441.
https://doi.org/10.1016/j.jeurceramsoc.2007.12.005
[5]  余洪涛, 田中青. 微波介质陶瓷的显微结构与性能[J]. 山东陶瓷, 2004, 27(1): 21-24.
[6]  胡明哲, 周东祥, 龚树萍. 微波介质陶瓷介电性能影响因素的研究[J]. 材料导报, 2004, 18(8): 7-10.
[7]  黄静, 周东祥, 胡明哲. 点缺陷对微波介质陶瓷介电性能的影响[J]. 华中科技大学学报, 2004, 32(10): 69-71.
[8]  胡杰, 吕学鹏, 张天宇, 李真, 陈昊元, 徐文盛. 低介电常数微波介质陶瓷研究进展[J]. 材料导报, 2017, 31(z2): 107-111+114.
[9]  李冉, 傅仁利, 何洪, 宋秀峰, 俞晓东. 低温共烧技术(LTCC)与低介电常数微波介质陶瓷[J]. 材料导报, 2010, 24(3): 40-44.
[10]  宋开新. 低介电常数微波介质陶瓷[D]: [博士学位论文]. 杭州: 浙江大学, 2007.
[11]  杨浛. 新型铌酸盐微波介质陶瓷的制备与改性研究[D]: [博士学位论文]. 成都: 电子科技大学, 2019.
[12]  李月明, 张华, 洪燕, 王竹梅, 沈宗洋. 高介电常数微波介质陶瓷及其低温烧结的研究进展[J]. 中国陶瓷工业, 2010, 17(5): 52-59.
[13]  陈亚伟. 中高介Ti基微波介质陶瓷的低温烧结及机理研究[D]: [博士学位论文]. 成都: 电子科技大学, 2020.
[14]  王浩, 田中青, 刘涛. 复合钙钛矿陶瓷的结构与微波介电性能[J]. 陶瓷学报, 2005, 26(4): 225-230.
[15]  Kagata, H., Inone, T., Kato, J., et al. (1992) Low Fired Bis-muth-Based Dielectric Ceramics. Japanese Journal of Applied Physics, 31, 3152-3155.
https://doi.org/10.1143/JJAP.31.3152
[16]  袁力, 丁士华, 姚熹. CuO, V2O5掺杂(1-x)BiNbO4-xZnTaO6的介电性能[J]. 电子元件与材料, 2005, 24(3): 20-22.
[17]  王茹玉, 黄金亮, 周焕福, 殷镖. CuO和V2O5掺杂对ZnNb2O6陶瓷介电性能的影响[J]. 硅酸盐学报, 2006, 34(4): 442-445.
[18]  王浩, 陈文, 田中青, 刘涛. 制备工艺对CaO-MgO-Nb2O5-TiO2微波介质陶瓷结构与介电性能的影响[J]. 材料科学与工艺, 2005, 13(3): 243-246.
[19]  Yuan, L.L. and Bian, J.J. (2009) Microwaves Dielectric Properties of the Lithium Containing Com-pounds with Rock Salt Structure. Ferroelectrics, 387, 123-129.
https://doi.org/10.1080/00150190902966610
[20]  Zhang, T.W. and Zuo, R.Z. (2014) Effect of Li2O-V2O5 Addi-tion on Sintering Behavior and Microwave Dielectric Properties of Li3(Mg1?xZnx)NbO6 Ceramics. Ceramics Internation-al, 40, 15677-15684.
https://doi.org/10.1016/j.ceramint.2014.07.090
[21]  Zhang, P., Liu, L., Zhao, Y., et al. (2017) Low Temperature Sintering and Microwave Dielectric Properties of Li3Mg2NbO6 Ceramics for LTCC Application. Journal of Materials Science-Materials in Electronics, 28, 5802-5806.
https://doi.org/10.1007/s10854-016-6251-1
[22]  Zhang, P., Xie, H., Zhao, Y., et al. (2017) Low Temperature Sin-tering and Microwave Dielectric Properties of Li3Mg2NbO6 Ceramics Doped with Li2O-B2O3-SiO2 Glass. Journal of Alloys and Compounds, 690, 688-691.
https://doi.org/10.1016/j.jallcom.2016.08.048
[23]  Zhang, P., Zhao, X. and Zhao, Y. (2016) Effects of MBS Addi-tion on the Low Temperature Sintering and Microwave Dielectric Properties of Li3Mg2NbO6 Ceramics. Journal of Mate-rials Science-Materials in Electronics, 27, 6395-6398.
https://doi.org/10.1007/s10854-016-4575-5
[24]  Zhang, P., Liao, J., Zhao, Y., et al. (2017) Effects of B2O3 Addi-tion on the Sintering Behavior and Microwave Dielectric Properties of Li3Mg2NbO6 Ceramics. Journal of Materials Sci-ence-Materials in Electronics, 28, 686-690.
https://doi.org/10.1007/s10854-016-5575-1
[25]  Luo, C., Hu, Y.D., Bao, S.X., et al. (2018) Low Temperature Sintering and Microwave Dielectric Properties Li3Mg2NbO6 Ceramics. Journal of Materials Science-Materials in Elec-tronics, 29, 15523-15528.
https://doi.org/10.1007/s10854-018-9107-z
[26]  Wang, G., Zhang, H.W., Liu, C., et al. (2018) Low Temperature Sintering and Microwave Dielectric Properties of Novel Temperature Stable Li3Mg2NbO6-0.1TiO2 Ceramics. Materials Letters, 217, 48-51.
https://doi.org/10.1016/j.matlet.2018.01.049
[27]  Zhang, P., Wu, S.X. and Xiao, M. (2018) Effect of Sb5+ Ion Substitution for Nb5+ on Crystal Structure and Microwave Dielectric Properties for Li3Mg2NbO6 Ceramics. Journal of Alloys and compounds, 766, 498-505.
https://doi.org/10.1016/j.jallcom.2018.06.347
[28]  Wang, G., Zhang, H.W., Huang, X. and Xu, F. (2018) Correla-tions between the Structural Characteristics and Enhanced Microwave Dielectric Properties of V-Modified Li3Mg2NbO6 Ceramics. Ceramics International, 44, 19295-19300.
https://doi.org/10.1016/j.ceramint.2018.07.156
[29]  Wang, G., Zhang, D., Huang, X., et al. (2019) Crystal Struc-ture and Enhanced Microwave Dielectric Properties of Ta5+ Substituted Li3Mg2NbO6 Ceramics. Journal of the American Ceramic Society, 103, 214-223.
https://doi.org/10.1111/jace.16692
[30]  Wang, G., Zhang, D., Li, J., et al. (2020) Crystal Structure, Bond Energy, Raman Spectra, and Microwave Dielectric Properties of Ti-Doped Li3Mg2NbO6 Ceramics. Journal of the American Ce-ramic Society, 103, 4321-4332.
https://doi.org/10.1111/jace.17091
[31]  Zhang, P., Hao, M.M., Mao, X.R., et al. (2020) Effects of W6+ Substitution on Crystal Structure and Microwave Dielectric Properties of Li3Mg2NbO6 Ceramics. Ceramics International, 46, 21336-21342.
https://doi.org/10.1016/j.ceramint.2020.05.229
[32]  Zhang, P., Sun, K.X., Xiao, M., et al. (2019) Crystal Structure, Densification, and Microwave Dielectric Properties of Li3Mg2(Nb(1–x)Mox) O6+x/2 (0 ≤ x ≤ 0.08) Ceramics. Journal of the American Ceramic Society, 102, 4127-4135.
https://doi.org/10.1111/jace.16286
[33]  Su, C.H., Ho, Y.D., Huang, C.L., et al. (2014) Low Loss and Temperature Stable Microwave Dielectrics Using Li2(Mg1?xAx)Ti3O8 (A2+ = Zn, Cox = 0.02-0.1) Ceramics. Journal of Alloys and Compounds, 607, 67-72.
https://doi.org/10.1016/j.jallcom.2014.03.131
[34]  Li, L.X., Ding, X., Liao, Q.W., et al. (2012) Structure and Properties Analysis for Low-Loss (Mg1?xCox)TiO3 Microwave Dielectric Materials Prepared by Reaction-Sintering Method. Ceramics International, 38, 1937-1941.
https://doi.org/10.1016/j.ceramint.2011.10.024
[35]  Wang, G., Zhang, D.N., Xu, F., et al. (2019) Correlation be-tween Crystal Structure and Modified Microwave Dielectric Characteristics of Cu2+ Substituted Li3Mg2NbO6 Ceramics. Ceramics International, 45, 10170-10175.
https://doi.org/10.1016/j.ceramint.2019.02.066
[36]  Zhang, P., Sun, K.X., Mao, X.R., et al. (2020) Crystal Struc-tures and High Microwave Dielectric Properties in Li+/Ti4+ Ions Co-Doped Li3Mg2NbO6 Ceramics. Ceramics Interna-tional, 46, 8097-8103.
https://doi.org/10.1016/j.ceramint.2019.12.036
[37]  Zhang, P., Hao, M.M., Xiao, M., et al. (2021) Microwave Di-electric Properties of Li3Mg2NbO6-Based Ceramics with (MxW1?x)5+ (M = Li+, Mg2+, Al3+, Ti4+) Substitutions at Nb5+ Sites. Journal of Alloys and Compounds, 853, Article ID: 157386.
https://doi.org/10.1016/j.jallcom.2020.157386

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133