全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种机载LiDAR点云自适应坡度阈值去植被算法
An Adaptive Slope Threshold Airborne LiDAR Point Cloud Devegetation Algorithm

DOI: 10.12677/AAM.2022.1112925, PP. 8784-8791

Keywords: 机载LiDAR,复杂地形,格网化,地形判断因子,坡度阈值
Airborne LiDAR
, Complex Terrain, Filtering Algorithm, Terrain Influencing Factor, Slope Threshold

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对利用机载LiDAR点云数据制作高精度DEM时易受地形及茂密植被干扰问题,提出一种改进的基于坡度和地形的滤波算法:新算法按一定尺度将点云格网化后,引入地形判断因子,判断格网内地形并自适应调整格网的坡度阈值,从而避免过渡平滑或忽略较小地形特征导致的地形失真,以及在陡坡断崖处滤波效果不佳的问题。对FARO SINGAPORE PTE. LTD公司提供的机载LiDAR点云数据处理结果表明,相对于经典坡度滤波本文算法优势明显,在地形复杂且植被密度大的林区也能很好地保留地面点并滤除植被等非地面点,得到真实的地形信息。在陡坡断崖地形区域,本文算法总误差较布料模拟算法降低了2.68%,滤波效果较好。
Aiming at the problem that the use of airborne LiDAR point cloud data to produce high-precision DEM is susceptible to terrain and dense vegetation interference, an improved filtering algorithm based on slope and terrain is proposed. After the point cloud is grid based on a certain scale, the terrain judgment factor is introduced to judge the terrain in the grid and adaptively adjust the gradient threshold of the grid, so as to avoid the problem of terrain distortion caused by smooth transition or ignoring small terrain features, and poor filtering effect on steep slopes and cliffs. The processing results of the airborne LiDAR point cloud data provided by FARO SINGAPORE PTE. LTD show that the algorithm in this paper has obvious advantages compared with the classical slope fil-tering. In the forest area with complex terrain and high vegetation density, the ground points can be well preserved and filtered out. Non-ground points such as vegetation can get real terrain infor-mation. In the area of steep slope and cliff terrain, the total error of the algorithm in this paper is reduced by 2.68% compared with the cloth simulation algorithm, and the filtering effect is better.

References

[1]  刘经南, 张小红. 激光扫描测高技术的发展与现状[J]. 武汉大学学报(信息科学版), 2003(2): 132-137.
[2]  Mongus, D. and Zalik, B. (2014) Computationally Efficient Method for the Generation of a Digital Terrain Model from Airborne LiDAR Data Using Connected Operators. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 340-351.
https://doi.org/10.1109/JSTARS.2013.2262996
[3]  陈永枫, 侯一凡, 徐青, 等. 一种自适应数学形态学LiDAR点云滤波方法[J]. 测绘科学技术学报, 2014, 31(6): 603-607.
[4]  Meng, X.L., Wang, L., Silván-Cárdenas, J.L. and Currit, N. (2008) A Multi-Directional Ground Filtering Algorithm for Airborne LIDAR. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 117-124.
https://doi.org/10.1016/j.isprsjprs.2008.09.001
[5]  Qin, L.J., Wu, W., Tian, Y.G., et al. (2017) LiDAR Filtering of Urban Areas with Region Growing Based on Moving-Window Weighted Iterative Least-Squares Fitting. IEEE Ge-oscience and Remote Sensing Letters, 14, 841-845.
https://doi.org/10.1109/LGRS.2017.2682854
[6]  Liu, X.Y. (2008) Airborne LiDAR for DEM Generation: Some Critical Issues. Progress in Physical Geography, 32, 31-49.
https://doi.org/10.1177/0309133308089496
[7]  李鹏程, 徐青, 邢帅, 等. 利用波形信息的加权曲面拟合LiDAR点云滤波[J]. 武汉大学学报(信息科学版), 2018, 43(3): 420-427.
[8]  Kraus, K. and Pfeifer, N. (1998) Determination of Terrain Models in Wooded Areas with Air-borne Laser Scanner Data. ISPRS Journal of Photogrammetry and Remote Sensing, 53, 193-203.
https://doi.org/10.1016/S0924-2716(98)00009-4
[9]  刘立坤. 基于流形理论的LiDAR多维点云分割方法研究[D]: [博士学位论文]. 武汉: 武汉大学, 2015: 10-116.
[10]  Filin, S. and Pfeifer, N. (2005) Segmentation of Airborne Laser Scanning Data Using a Slope Adaptive Neighborhood. ISPRS Journal of Photogrammetry and Remote Sensing, 60, 71-80.
https://doi.org/10.1016/j.isprsjprs.2005.10.005
[11]  马涛, 杨小明, 阎跃观, 等. 以窗口化和地形坡度为基础的植被茂密区域点云滤波算法[J]. 测绘通报, 2021(8): 33-36.
[12]  阎跃观, 陈中章, 孙阳, 等. 密集低矮植被区LiDAR点云地面滤波算法[J]. 测绘通报, 2021(7): 1-5.
[13]  田香勇, 胡洪, 许邦鑫. 基于组合滤波算法的机载LiDAR数据DEM构建[J]. 激光与光电子学进展, 2021, 57(3): 1-20.
[14]  何培培, 万幼川, 黄桂平, 马开锋. 城区LiDAR点云自适应坡度的滤波算法[J]. 遥感信息, 2017, 32(5): 62-68.
[15]  Hui, Z.Y., Hu, Y.J., Yevenyo, Y.Z., et al. (2016) An Improved Morphological Algorithm for Filtering Airborne LiDAR Point Cloud Based on Multi-Level Kriging Interpolation. Remote Sensing, 1, 32.
[16]  王佳雯, 李向新, 张海清. 基于高程归一化的地形自适应滤波方法[J]. 激光与光电子学进展, 2022, 59(10): 466-475.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133