全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ga2O3薄膜制备及其日盲紫外光电探测性能的研究进展
Research Progress of Preparation and UV Photoelectric Detection Performance of Ga2O3 Thin Films

DOI: 10.12677/APP.2022.1212071, PP. 621-634

Keywords: 氧化镓薄膜,制备,光电性能,日盲探测
Gallium Oxide Film
, Preparation, Optical Properties, Ultraviolet Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧化镓(Ga2O3)作为一种直接带隙半导体材料,因其光学带隙为4.9 eV、对应辐射波长为254 nm、透过率高等特点,自发现以来一直被认为是透明导电电极、紫外探测器的优秀候选材料。本文主要介绍了氧化镓的物化性质、氧化镓薄膜的制备方法以及国内外学者利用元素掺杂提升氧化镓薄膜光学、电学、紫外探测性能的研究进展。Si、Cu、Zn、Mg、Ta、Nb等元素的掺杂均能改变Ga2O3薄膜的光学、电学特性。其中Sn掺杂和Ta掺杂可以获得较高的电导率,Ta掺杂可使薄膜具有较高的载流子迁移率,Cu、Zn等二价金属掺杂主要降低了薄膜的带隙影响其光学性能。同时基于Si、Mg、Zn、Sn、Nb等元素掺杂的Ga2O3薄膜所制备的光电探测器的性能均有所改善,相对本征Ga2O3薄膜器件的响应时间变短、光电流变大。
Gallium oxide (Ga2O3) as a direct band semiconductor material, has been considered as an excellent candidate material for transparent conductive electrodes and UV detectors since its discovery because of its optical band gap of 4.9 eV, corresponding radiation wavelength of 254 nm and high transmittance. This paper first introduces the origin, development, application, physical and chemical properties of gallium oxide. Then we review the most common processing method-the preparation of gallium oxide thin film, and the enhancement of the optical, electrical and UV-detective properties of gallium oxide thin films by element doping proposed by scholars at home and abroad. The doping of Si, Cu, Zn, Mg, Ta and Nb can change the optical and electrical properties of Ga2O3 films. Among them, Sn doping and Ta doping can obtain high electrical conductivity, and Ta doping can make the films have high carrier mobility. Cu, Zn and other divalent metal doping mainly reduces the band gap of the film affecting its optical properties. The performance of photo detectors prepared from Ga2O3 films based on Si, Mg, Zn, Sn, Nb and other elements doping are improved, and the response time is shorter and the photocurrent is larger relative to the pure Ga2O3 film devices.

References

[1]  孟婷, 赵二俊, 刘雨欣. Co掺杂β-Ga2O3的电学性质和电荷转变能级的第一性原理计算[J]. 原子与分子物理学报, 2023, 40(2): 187-194.
[2]  玄鑫淼, 王加恒, 毛彦琦, 等. 基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究[J]. 物理学报, 2021, 70(23): 369-377.
[3]  陈彦成. 氧化镓基日盲紫外光电探测器研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2019.
[4]  崔书娟. 氧化镓基光电探测器的研制与研究[D]: [博士学位论文]. 北京: 中国科学院大学, 2018.
[5]  Varley, J.B., Weber, J.R., Janotti, A. and Van de Walle, C.G. (2010) Oxygen Va-cancies and Donor Impurities in β-Ga2O3. Applied Physics Letters, 97, Article ID: 142106.
https://doi.org/10.1063/1.3499306
[6]  An, Y.H., Zhi, Y.S., Cui, W., et al. (2017) Thickness Tuning Photoe-lectric Properties of β-Ga2O3 Thin Film Based Photodetectors. Journal of Nanoscience and Nanotechnology, 17, 9091-9094.
https://doi.org/10.1166/jnn.2017.13873
[7]  Lee, M.L., Chi, P.-F. and Sheu, J.K. (2009) Photo-detectors Formed by an Indium Tin Oxide/Zincoxide/p-Type Gallium Nitride Heterojunction with High Ultravio-let-to-Visible Rejection Ratio. Applied Physics Letters, 94, Article ID: 013512.
https://doi.org/10.1063/1.3064130
[8]  冉景杨, 高灿灿, 马奎, 杨发顺. 磁控溅射功率对β-Ga2O3薄膜特性的影响[J]. 原子与分子物理学报, 2022, 39(4): 96-100.
[9]  张静林, 李家印, 张龙, 等. 本征缺陷对β-Ga2O3光催化性质影响的第一性原理研究[J]. 原子与分子物理学报, 2022, 39(3): 28-35.
[10]  盛拓. 氧化镓薄膜光电导日盲紫外探测器的研制[D]: [硕士学位论文]. 成都: 电子科技大学, 2015.
[11]  郭道友, 李培刚, 陈政委, 等. 超宽禁带半导体 β-Ga2O3及深紫外透明电极、日盲探测器的研究进展[J]. 物理学报, 2019, 68(7): 7-42.
[12]  付宏远, 张猛, 张宝萍, 等. 溅射功率对氧化镓薄膜特性的影响[J]. 河南科技大学学报(自然科学版), 2021, 42(1): 95-99.
[13]  杨妮. 氧化镓薄膜的择优取向制备及其应用研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2016.
[14]  李秀华, 张敏, 杨佳, 等. 薄膜厚度对射频磁控溅射β-Ga2O3薄膜光电性能的影响[J]. 物理学报, 2022, 71(4): 286-297.
[15]  杨赉, 高灿灿, 杨发顺, 马奎. 后退火时间对磁控溅射制备β-Ga2O3薄膜材料的影响[J]. 原子与分子物理学报, 2022, 39(5): 119-124.
[16]  Zhang, Y., Yan, J., Li, Q., et al. (2011) Optical and Structural Properties of Cu-Doped β-Ga2O3 Films. Materials Science and Engineering: B, 176, 846-849.
https://doi.org/10.1016/j.mseb.2011.04.014
[17]  Kumar, S.S., Rubio, E.J., Noor-A-Alam, M., et al. (2013) Structure, Morphology, and Optical Properties of Amorphous and Nanocrystalline Gallium Oxide Thin Films. The Journal of Physical Chemistry C, 117, 4194-4200.
https://doi.org/10.1021/jp311300e
[18]  Huang, J., Li, B., Ma, Y., et al. (2018) Effect of Homo-Buffer Layers on the Properties of Sputtering Deposited Ga2O3 Films. Materials Science and Engineering, 362, Article ID: 012003.
https://doi.org/10.1088/1757-899X/362/1/012003
[19]  罗月婷, 肖黎, 陈远豪, 等. 雾化辅助化学气相沉积法氧化镓薄膜生长研究[J]. 人工晶体学报, 2022, 51(7): 1163-1168.
[20]  Oh, S., Jung, Y.H., Mastro, M.A., et al. (2015) Development of Solar-Blind Photodetectors Based on Si-Implanted β-Ga2O3. Optics Express, 23, 28300-28305.
https://doi.org/10.1364/OE.23.028300
[21]  Feng, Z., Anhar Uddin Bhuiyan, A.F.M., Kalarickal, N.K., Rajan, S. and Zhao, H. (2020) Mg Acceptor Doping in MOCVD (010) β-Ga2O3. Applied Physics Letters, 117, Article ID: 222106.
https://doi.org/10.1063/5.0031562
[22]  周淑琴, 刘云圻, 邱文丰, 等. 有机分子束外延技术与研究进展[J]. 物理学进展, 2000(4): 395-406.
[23]  Guo, D., Wu, Z., Li, P., et al. (2014) Fabrication of β-Ga2O3 Thin Films and Solar-Blind Photodetectors by Laser MBE Technology. Optical Materials Express, 4, 1067-1076.
https://doi.org/10.1364/OME.4.001067
[24]  Bi, X., Wu, Z., Huang, Y. and Tang, W. (2018) Sta-bilization and Enhanced Energy Gap by Mg Doping in ε-Phase Ga2O3 Thin Films. AIP Advances, 8, Article ID: 25008.
https://doi.org/10.1063/1.5022600
[25]  Cheng, Y., Liang, H., Liu, Y., et al. (2013) Influence of N2 and O2 Annealing Treatment on the Optical Bandgap of Polycrystalline Ga2O3:Cu Films. Materials Science in Semicon-ductor Processing, 16, 1303-1307.
https://doi.org/10.1016/j.mssp.2013.03.003
[26]  Dakhel, A.A. (2013) Investigation of Opto-Dielectric Prop-erties of Ti-Doped Ga2O3 Thin Films. Solid State Sciences, 20, 54-58.
https://doi.org/10.1016/j.solidstatesciences.2013.03.009
[27]  Orita, M., Ohta, H. and Hirano, M. (2000) Deep-Ultraviolet Transparent Conductive β-Ga2O3 Thin Films. Applied Physics Letters, 77, 4166-4168.
https://doi.org/10.1063/1.1330559
[28]  Takakura, K., Koga, D., Ohyama, H., et al. (2009) Evaluation of the Crystalline Quality of β-Ga2O3 Films by Optical Absorption Measurements. Physica B: Condensed Matter, 404, 4854-4857.
https://doi.org/10.1016/j.physb.2009.08.167
[29]  Wang, D., Ma, X., Xiao, H., Le, Y. and Ma, J. (2021) Ta-Doped Epitaxial β-Ga2O3 Films Deposited on SrTiO3(100) Substrates by MOCVD. Materials Science in Semi-conductor Processing, 128, Article ID: 105749.
https://doi.org/10.1016/j.mssp.2021.105749
[30]  Zhang, H., Deng, J.X., Zhang, Q., et al. (2021) Trace Amount of Niobium Doped?β-Ga2O3 Deep Ultraviolet Photodetector with Enhanced Photo-Response. Optik, 243, Article ID: 167353.
https://doi.org/10.1016/j.ijleo.2021.167353
[31]  Zhao, X., Wu, Z., Zhi, Y., et al. (2017) Improvement for the Performance of Solar-Blind Photodetector Based on β- Ga2O3 Thin Films by Doping Zn. Journal of Physics D: Applied Physics, 50, Article ID: 085102.
https://doi.org/10.1088/1361-6463/aa5758
[32]  Liu, Z., Huang, Y., Li, H., et al. (2020) Fabrication and Characterization of Mg-Doped ε-Ga2O3 Solar-Blind Photodetector. Vacuum, 117, Article ID: 109425.
https://doi.org/10.1016/j.vacuum.2020.109425
[33]  Ou, S.-L., Wuu, D.-S., Fu, Y-C.., et al. (2012) Growth and Etching Characteristics of Gallium Oxide Thin Films by Pulsed Laser Deposition. Materials Chemistry and Physics, 133, 700-705.
https://doi.org/10.1016/j.matchemphys.2012.01.060
[34]  Xu, C.X., Liu, H., Pan, X.H. and Ye, Z.Z. (2020) Growth and Characterization of Si-Doped β-Ga2O3 Films by Pulsed Laser Deposition. Optical Materials, 108, Article ID: 110145.
https://doi.org/10.1016/j.optmat.2020.110145
[35]  Orita, M., Hiramatsu, H., Ohta, H., Hirano, M. and Hosono, H. (2002) Preparation of Highly Conductive, Deep Ultraviolet Transparent β-Ga2O3 Thin Film at Low Deposition Temperatures. Thin Solid Films, 411, 134-139.
https://doi.org/10.1016/S0040-6090(02)00202-X
[36]  Shang, Y., Tang, K., Chen, Z.R., et al. (2021) Growth and Characterization of Ta-Doped Ga2O3 Films Deposited by Magnetron Sputtering. Materials Science in Semi-conductor Processing, 134, Article ID: 106040.
https://doi.org/10.1016/j.mssp.2021.106040
[37]  Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T. and Yamakoshi, S. (2012) Gallium Oxide (Ga2O3) Metal-Semiconductor Field-Effect Transistors on Single-Crystal β-Ga2O3 (010) Substrates. Applied Physics Letters, 100, Article ID: 013504.
https://doi.org/10.1063/1.3674287
[38]  Sang, L., Liao, M. and Sumiya, M. (2013) A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures. Sensors, 13, 10482-10518.
https://doi.org/10.3390/s130810482
[39]  Fan, M.-M., Lu, Y.-J., Xu, K.-L., et al. (2020) Growth and Charac-terization of Sn-Doped β-Ga2O3 Thin Films by Chemical Vapor Deposition Using Solid Powder Precursors toward Solar-Blind Ultraviolet Photodetection. Applied Surface Science, 509, Article ID: 144867.
https://doi.org/10.1016/j.apsusc.2019.144867
[40]  Hu, D.Q., Wang, Y., Wang, Y.D., et al. (2021) Fabrication and Properties of a Solar-Blind Ultraviolet Photodetector Based on Si-Doped β-Ga2O3 Film Grown on p-Si (111) Substrate by MOCVD. Optik, 245, Article ID: 167708.
https://doi.org/10.1016/j.ijleo.2021.167708
[41]  Yoon, Y., Kim, S., Lee, I.G., Cho, B.J. and Hwang, W.S. (2021) Electrical and Photocurrent Properties of a Polycrystalline Sn-Doped β-Ga2O3 Thin Film. Materials Science in Semiconductor Processing, 121, Article ID: 105430.
https://doi.org/10.1016/j.mssp.2020.105430
[42]  Qian, Y.P., Guo, D.Y., Chu, X.L., et al. (2017) Mg-Doped p-Type β-Ga2O3 Thin Film for Solar-Blind Ultraviolet Photodetector. Materials Letters, 209, 558-561.
https://doi.org/10.1016/j.matlet.2017.08.052
[43]  Oshima, T., Okuno, T. and Fujita, S. (2007) Ga2O3 Thin Film Growth on c-Plane Sapphire Substratesby Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors. Japanese Journal of Applied Physics, 46, 7217-7220.
https://doi.org/10.1143/JJAP.46.7217
[44]  Sheng, T., Liu, X.-Z., Qian, L.-X., Xu, B. and Zhang, Y.-Y. (2022) Photoelectric Properties of β-Ga2O3 Thin Films Annealed at Different Conditions. Rare Metals, 41, 1375-1379.
https://doi.org/10.1007/s12598-015-0575-5
[45]  Qian, L.X., Liu, X.Z., Sheng, T., et al. (2016) β-Ga2O3 So-lar-Blind Deep-Ultraviolet Photodetector Based on a Four- Terminal Structure with or without Zener Diodes. AIP Advances, 6, Article ID: 045009.
https://doi.org/10.1063/1.4947137
[46]  Alema, F., Hertog, B., Ledyaev, O., et al. (2017) Solar Blind Photo-detector Based on Epitaxial Zinc Doped Ga2O3 Thin Film. Physica Status Solidi, 214, Article ID: 1600688.
https://doi.org/10.1002/pssa.201600688
[47]  Guo, D., Su, Y., Shi, H., et al. (2018) Self-Powered Ultraviolet Photodetector with Super HighPhotoresponsivity (3.05 A/W) Based on the GaN/Sn:Ga2O3 pn Junction. ACS Nano, 12, 12827-12835.
https://doi.org/10.1021/acsnano.8b07997
[48]  Ahn, S., Lin, Y.-H., Ren, F., et al. (2016) Effect of 5 MeV Proton Irradiation Damage on Performance of β-Ga2O3 Photodetectors. Journal of Vacuum Science & Technology B, 34, Article ID: 041213.
https://doi.org/10.1116/1.4950872
[49]  Zhao, X., Wu, Z., Guo, D., et al. (2016) Growth and Characterization of α-Phase Ga2?xSnxO3 Thin Films for Solar-Blind Ultraviolet Applications. Semiconductor Science and Technology, 31, Article ID: 065010.
https://doi.org/10.1088/0268-1242/31/6/065010
[50]  Feng, Q., Li, X., Han, G., et al. (2017) (AlGa)2O3 So-lar-Blind Photodetectors on Sapphire with Wider Bandgap and Improved Responsivity. Optical Materials Express, 7, 1240-1248.
https://doi.org/10.1364/OME.7.001240
[51]  Ahn, S., Ren, F., Oh, S., et al. (2016) Elevated Temperature Performance of Si-Implanted Solar-Blind β-Ga2O3 Photodetectors. Journal of Vacuum Science & Technology B, 34, Article ID: 041207.
https://doi.org/10.1116/1.4948361

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133