全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

薄壁零件加工残余应力变形预测及控制技术研究现状
Research Status of Residual Stress Deformation Prediction and Control Technology for Thin-Walled Parts Processing

DOI: 10.12677/MET.2022.116074, PP. 647-659

Keywords: 薄壁零件,残余应力,变形预测,变形控制;Thin-Walled Parts, Residual Stress, Deformation Prediction, Deformation Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

薄壁零件的加工质量直接影响航空、兵器等国防工业高端装备的服役性能。然而,作为典型的弱刚度零件,在整个制造流程中因残余应力引入会导致的严重加工变形,难以满足制造精度及质量的要求。本文在分析残余应力诱导变形产生机理的基础上,对现有的残余应力变形预测方法进行了分类总结,阐述了相关方法的特点。同时,根据变形的主要来源,从初始残余应力及切削残余应力两个方面对现有的残余应力变形控制方法进行了归纳总结。最后,对复杂薄壁零件加工残余应力变形及其控制技术的未来研究进行了展望。
The processing quality of thin-walled parts directly affects the service performance of high-end equipment in the defense industry such as aviation and weapons. However, as a typical weak stiff-ness part, the serious machining deformation caused by the introduction of residual stress in the entire manufacturing process is difficult to meet the requirements of manufacturing accuracy and quality. Based on the analysis of the residual stress-induced deformation mechanism, the existing residual stress deformation prediction methods are classified and summarized in this paper, and the characteristics of the related methods are expounded. At the same time, according to the main sources of deformation, the existing residual stress deformation control methods are summarized from two aspects: initial residual stress and cutting residual stress. Finally, the future research on residual stress deformation and control technology of complex thin-walled parts is prospected.

References

[1]  王志刚, 何宁, 武凯, 赵威. 薄壁件加工变形因素综合分析[C]//第四次江苏科技论坛机械装备制造分论坛论文汇编. 南京: 江苏科技论坛机械装备制造分论坛, 2003: 37-41.
[2]  张云峰, 曹岩. 薄壁件加工变形分析与控制[J]. 科技信息(科学教研), 2008(8): 200+245.
[3]  Bowden, D.M. and Halley, J.E. (2001) Aluminium Reliability Improvement Program—Final Report 60606. The Boeing Company, Chicago.
[4]  Nervi, S., Szabó, B.A. and Young, K.A. (2009) Prediction of Distortion of Airframe Components Made from Aluminum Plates. AIAA Journal, 47, 1635-1641.
https://doi.org/10.2514/1.37233
[5]  Yang, Y., Li, X., Li, L., He, N., Zhao, G., Chen, N., Hui, L. and Zhou, Z. (2019) Investigation on Deformation of Single-Sided Stringer Parts Based on Fluctuant Initial Residual Stress. Journal of Materials Processing Technology, 271, 623-633.
https://doi.org/10.1016/j.jmatprotec.2019.04.031
[6]  Gao, H., Zhang, Y., Wu, Q., and Song, J. (2017) An Analytical Model for Predicting the Machining Deformation of a Plate Blank Considers Biaxial Initial Residual Stresses. The International Journal of Advanced Manufacturing Technology, 93, 1473-1486.
https://doi.org/10.1007/s00170-017-0528-2
[7]  Gao, H., Zhang, Y., Wu, Q. and Li, B. (2018) Investigation on Influ-ences of Initial Residual Stress on Thin-Walled Part Machining Deformation Based on a Semi-Analytical Model. Journal of Materials Processing Technology, 262, 437-448.
https://doi.org/10.1016/j.jmatprotec.2018.04.009
[8]  王树宏. 航空铝合金厚板初始残余应力及其对铣削变形影响的基础研究[D]: [博士学位论文]. 南京: 南京航空航天大学, 2005.
[9]  Fergani, O., Lazoglu, I., Mkaddem, A., El Mansori, M. and Liang, S.Y. (2014) Analytical Modeling of Residual Stress and the Induced Deflection of a Milled Thin Plate. The International Journal of Advanced Manufacturing Technology, 75, 455-463.
https://doi.org/10.1007/s00170-014-6146-3
[10]  Fergani, O., Mamedov, A., Lazoglu, I., Yang, J.G. and Liang, S.Y. (2014) Prediction of Residual Stress Induced Distortions in Micro-Milling of Al7050 Thin Plate. In: Applied Mechanics and Materials, Vol. 472, Trans Tech Publications Ltd., B?ch, 677-681.
https://doi.org/10.4028/www.scientific.net/AMM.472.677
[11]  Fergani, O., Jiang, X. and Welo, T. (2016) Analysis of Residual Stress-Induced Distortions of Thin Sheet Structures in Multi-Step Milling. AIP Conference Proceedings, 1769, Article ID: 080014.
https://doi.org/10.1063/1.4963489
[12]  Wang, S.P. and Padmanaban, S. (2004) A New Approach for FEM Simulation of NC Machining Processes. AIP Conference Proceedings, 712, 1371-1376.
https://doi.org/10.1063/1.1766720
[13]  Wei, Y. and Wang, X.W. (2007) Computer Simulation and Experimental Study of Machining Deflection Due to Original Residual Stress of Aerospace Thin-Walled Parts. The International Journal of Advanced Manufacturing Technology, 33, 260-265.
https://doi.org/10.1007/s00170-006-0470-1
[14]  Tang, Z.T., Yu, T., Xu, L.Q. and Liu, Z.Q. (2013) Machining Deformation Prediction for Frame Components Considering Multifactor Coupling Effects. The International Journal of Advanced Manufacturing Technology, 68, 187-196.
https://doi.org/10.1007/s00170-012-4718-7
[15]  Bi, Y.B., Cheng, Q.L., Dong, H.Y. and Ke, Y.L. (2009) Machining Distortion Prediction of Aerospace Monolithic Components. Journal of Zhejiang University—SCIENCE A, 10, 661-668.
https://doi.org/10.1631/jzus.A0820392
[16]  Cerutti, X. and Mocellin, K. (2015) Parallel Finite Element Tool to Predict Distortion Induced by Initial Residual Stresses during Machining of Aeronautical Parts. International Journal of Material Forming, 8, 255-268.
https://doi.org/10.1007/s12289-014-1164-0
[17]  Cerutti, X., Arsene, S. and Mocellin, K. (2016) Prediction of Machining Quality Due to the Initial Residual Stress Redistribution of Aerospace Structural Parts Made of Low-Density Aluminium Alloy Rolled Plates. International Journal of Material Forming, 9, 677-690.
https://doi.org/10.1007/s12289-015-1254-7
[18]  Cerutti, X. and Mocellin, K. (2016) Influence of the Machining Sequence on the Residual Stress Redistribution and Machining Quality: Analysis and Improvement Using Numerical Simulations. The In-ternational Journal of Advanced Manufacturing Technology, 83, 489-503.
https://doi.org/10.1007/s00170-015-7521-4
[19]  Ma, Y., Zhang, J., Yu, D., Feng, P. and Xu, C. (2019) Modeling of Machining Distortion for Thin-Walled Components Based on the Internal Stress Field Evolution. The International Journal of Advanced Manufacturing Technology, 103, 3597-3612.
https://doi.org/10.1007/s00170-019-03736-9
[20]  周金华. 薄壁结构切削残余应力建模及变形预测[D]: [博士学位论文]. 西安: 西北工业大学, 2018.
[21]  王骏腾. 薄壁件铣削残余应力变形的感知预测与工艺优化方法[D]: [博士学位论文]. 西安: 西北工业大学, 2018.
[22]  Huang, X., Sun, J. and Li, J. (2015) Finite Element Simulation and Experimental Investigation on the Residual Stress-Related Monolithic Component Defor-mation. The International Journal of Advanced Manufacturing Technology, 77, 1035-1041.
https://doi.org/10.1007/s00170-014-6533-9
[23]  Huang, X., Sun, J. and Li, J. (2015) Effect of Initial Residual Stress and Machining-Induced Residual Stress on the Deformation of Aluminium Alloy Plate. Strojniski Vestnik/Journal of Mechanical Engineering, 61, 131-137.
https://doi.org/10.5545/sv-jme.2014.1897
[24]  Young, K.A. (2005) Machining-Induced Residual Stress and Distortion of Thin Parts. Ph.D. Thesis, Washington University, Saint Louis.
https://doi.org/10.4271/2005-01-3317
[25]  Ma, K., Goetz, R. and Srivatsa, S.K. (2010) Modeling of Residual Stress and Machining Distortion in Aerospace Components (Preprint). Air Force Research Lab Wright-Patterson AFB OH Materials and Manufacturing Directorate.
[26]  Sim, W.M. (2011) Residual Stress Engineering in Manufacture of Aerospace Structural Parts. 3rd International Conference on Distortion Engineering, Bremen, 14-16 September 2011, 187-194.
[27]  Zhang, S., Wu, Y. and Gong, H. (2012) A Modeling of Residual Stress in Stretched Aluminum Alloy Plate. Journal of Materials Processing Technology, 212, 2463-2473.
https://doi.org/10.1016/j.jmatprotec.2012.06.019
[28]  Koc, M., Culp, J. and Altan, T. (2006) Prediction of Residual Stresses in Quenched Aluminum Blocks and Their Reduction through Cold Working Processes. Journal of Materials Pro-cessing Technology, 174, 342-354.
https://doi.org/10.1016/j.jmatprotec.2006.02.007
[29]  Husson, R., Dantan, J.Y., Baudouin, C., Silvani, S., Scheer, T. and Bigot, R. (2012) Evaluation of Process Causes and Influences of Residual Stress on Gear Distortion. CIRP Annals, 61, 551-554.
https://doi.org/10.1016/j.cirp.2012.03.106
[30]  Masoudi, S., Amirian, G., Saeedi, E. and Ahmadi, M. (2015) The Effect of Quench-Induced Residual Stresses on the Distortion of Machined Thin-Walled Parts. Journal of Materials Engineering and Performance, 24, 3933-3941.
https://doi.org/10.1007/s11665-015-1695-7
[31]  孙杰. 航空整体结构件数控加工变形校正理论和方法研究[D]: [博士学位论文]. 杭州: 浙江大学, 2003.
[32]  Landwehr, M., Oehler, F., Behnken, H., Holling, H., Sambathkumar, R., Ganser, P. and Bergs, T. (2021) Influence of Heat Treatment on the Residual Stress-Related Machining Distortion of Ti-6Al-4V Alloy Monolithic Parts. Procedia CIRP, 104, 1328-1333.
https://doi.org/10.1016/j.procir.2021.11.223
[33]  Wang, J.S., Hsieh, C.C., Lin, C.M., Chen, E.C., Kuo, C.W. and Wu, W. (2014) The Effect of Residual Stress Relaxation by the Vibratory Stress Relief Technique on the Textures of Grains in AA 6061 Aluminum Alloy. Materials Science and Engineering: A, 605, 98-107.
https://doi.org/10.1016/j.msea.2014.03.037
[34]  熊冠华. 振动时效对铝合金薄壁构件尺寸稳定性的影响[D]: [硕士学位论文]. 长沙: 中南林业科技大学, 2018.
[35]  刘嘉辰, 王金亮, 陈慧琴. 高强铝合金超厚板淬火残余应力及其冷压缩消除过程分析[J]. 轻合金加工技术, 2014, 42(9): 27-32+47.
[36]  王秋成, 柯映林. 深冷处理消除7050铝合金残余应力的研究[J]. 浙江大学学报(工学版), 2003(6): 120-123.
[37]  吴红兵. 航空框类整体结构件铣削加工变形的数值模拟与实验研究[D]: [博士学位论文]. 杭州: 浙江大学, 2008.
[38]  柯烈强. 航空框类结构件铣削加工残余应力抑制策略研究[D]: [硕士学位论文]. 芜湖: 安徽工程大学, 2010.
[39]  武凯, 何宁, 廖文和, 宋良煌, 陈雪梅. 阶梯对称铣削工艺在薄壁件精密加工中的应用[J]. 航空精密制造技术, 2005(5): 46-47+50.
[40]  Wu, Q., Li, D.P. and Zhang, Y.D. (2016) Detecting Milling Deformation in 7075 Aluminum Alloy Aeronautical Monolithic Components Using the Quasi-Symmetric Machining Method. Metals, 6, 80.
https://doi.org/10.3390/met6040080
[41]  Yang, Y.F., Fan, L.X., Li, L., Zhao, G.L., Han, N., Li, X.Y., Tian, H. and He, N. (2020) Energy Principle and Material Removal Sequence Optimization Method in Machining of Aircraft Monolithic Parts. Chi-nese Journal of Aeronautics, 33, 2770-2781.
https://doi.org/10.1016/j.cja.2020.05.018
[42]  Fan, L., Li, L., Yang, Y., Zhao, G., Han, N., Tian, H. and He, N. (2021) Control of Machining Distortion Stability in Machining of Monolithic Aircraft Parts. The International Journal of Advanced Manufacturing Technology, 112, 3189-3199.
https://doi.org/10.1007/s00170-021-06605-6
[43]  张以都, 张洪伟. 航空整体结构件加工变形有限元数值仿真[J]. 北京航空航天大学学报, 2009, 35(2): 188-192.
[44]  Dreier, S., Brüning, J. and Denkena, B. (2016) Simulation Based Reduction of Residual Stress Related Part Distortion. Materialwissenschaft und Werkstofftechnik, 47, 710-717.
https://doi.org/10.1002/mawe.201600604
[45]  王华敏, 秦国华, 林锋, 左敦稳, 韩雄, 陈雪梅. 面向7075-T7451铝合金厚板加工变形控制的变向迭代优化方法[J]. 稀有金属材料与工程, 2019, 48(4): 1239-1248.
[46]  Li, B., Jiang, X., Yang, J. and Liang, S.Y. (2015) Effects of Depth of Cut on the Redistribution of Residual Stress and Distortion during the Milling of Thin-Walled Part. Journal of Materials Processing Technology, 216, 223-233.
https://doi.org/10.1016/j.jmatprotec.2014.09.016
[47]  Masoudi, S., Amini, S., Saeidi, E. and Eslami-Chalander, H. (2015) Effect of Machining-Induced Residual Stress on the Distortion of Thin-Walled Parts. The International Journal of Advanced Manufacturing Technology, 76, 597-608.
https://doi.org/10.1007/s00170-014-6281-x
[48]  刘海涛. 精密薄壁回转体零件加工残余应力及变形的研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2010.
[49]  丛靖梅, 莫蓉, 吴宝海, 王骏腾. 薄壁件残余应力变形仿真预测与切削参数优化[J]. 机械科学与技术, 2019, 38(2): 205-210.
[50]  Xue, L.F., Chen, W.F., Feng, T. and Ma, W.T. (2014) Syn-chronous Optimization of Clamping Force and Cutting Parameters for Thin-Walled Parts. In: Advanced Materials Research, Vol. 900, Trans Tech Publications Ltd., B?ch, 623-626.
https://doi.org/10.4028/www.scientific.net/AMR.900.623
[51]  Denkena, B., Boehnke, D. and de Leon, L. (2008) Ma-chining Induced Residual Stress in Structural Aluminum Parts. Production Engineering, 2, 247-253.
https://doi.org/10.1007/s11740-008-0097-1
[52]  何宁, 杨吟飞, 李亮, 赵威. 航空结构件加工变形及其控制[J]. 航空制造技术, 2009, 52(6): 32-35.
[53]  付秀丽, 艾兴, 张松, 潘永智. 航空整体结构件的高速切削加工[J]. 工具技术, 2006(3): 80-83.
[54]  单英吉, 孙树强, 杨巍. 高速切削技术在飞机结构件加工中的应用研究[J]. 中国新技术新产品, 2016(8): 16-17.
[55]  江宏志. 浅谈民用航空薄壁结构件加工方法与应用[J]. 山东工业技术, 2018(3): 8+127.
[56]  郭魂, 左敦稳, 王树宏, 王焱, 王珉. 拉伸装夹对航空框类零件加工变形影响的有限元分析[J]. 南京航空航天大学学报, 2005(S1): 72-76.
[57]  董辉跃, 柯映林. 铣削加工中薄壁件装夹方案优选的有限元模拟[J]. 浙江大学学报(工学版), 2004, 38(1): 18-22.
[58]  Li, Y., Liu, C., Hao, X., Gao, J.X. and Maropoulos, P.G. (2015) Responsive Fixture Design Using Dynamic Product Inspection and Monitoring Technologies for the Precision Machining of Large-Scale Aerospace Parts. CIRP Annals, 64, 173-176.
https://doi.org/10.1016/j.cirp.2015.04.025
[59]  Yu, J.H., Chen, Z.T. and Jiang, Z.P. (2016) A Con-trol Process for Machining Distortion by Using an Adaptive Dual- Sphere Fixture. The International Journal of Advanced Manufacturing Technology, 86, 3463-3470.
https://doi.org/10.1007/s00170-016-8470-2
[60]  于建华, 陈志同. 双臂自适应夹具加工变形控制方法[J]. 航空学报, 2016, 37(5): 1657-1665.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133