全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

唑类药物的耐药机制及结构修饰研究进展
Recent Advances on Resistance Mechanism and Structural Modification of Azole Drugs

DOI: 10.12677/AMB.2022.114026, PP. 204-210

Keywords: 真菌,耐药机制,唑类药物
Fungi
, Resistance Mechanism, Azole Drugs

Full-Text   Cite this paper   Add to My Lib

Abstract:

侵袭性真菌疾病对公共卫生构成了威胁。唑类药物可以通过抑制麦角固醇的合成来治疗真菌疾病,但唑类药物的广泛使用导致真菌产生了耐药性,使得临床治疗失败。所以,研发新的抗真菌化合物十分重要。本文介绍了现有抗真菌药物的分类及唑类药物的作用机制、结构修饰及耐药机制。这有利于更好的认识目前唑类药物的情况,以期促进新型抗真菌药物的研发。
Invasive fungal diseases pose a threat to public health. Azole drugs can be used to treat fungal diseases by inhibiting the synthesis of ergosterol, but the widespread use of azole drugs leads to the development of drug resistance in fungi, which makes clinical treatment failure. Therefore, it is very important to develop new antifungal compounds. In this paper, the classification of antifungal drugs and the mechanism of action, structural modification and resistance of azole drugs were introduced. This is conducive to a better understanding of the current situation of azole drugs, in order to promote the development of new antifungal drugs.

References

[1]  Perlin, D.S., Rautemaa-Richardson, R. and Alastruey-Izquierdo, A. (2017) The Global Problem of Antifungal Resistance: Prevalence, Mechanisms, and Management. The Lancet Infectious Diseases, 17, e383-e392.
https://doi.org/10.1016/S1473-3099(17)30316-X
[2]  杨启文, 倪语星, 林丽开, 等. 临床微生物实验室真菌检测能力建设基本要求专家共识[J]. 中华检验医学杂志, 2019, 42(7): 514-528.
[3]  Zeng, G.S., Xu, X.L., Gao, J.X., et al. (2021) Inactivating the Mannose-Ethanolamine Phosphotransferase Gpi7 Confers Caspofungin Resistance in the Human Fungal Pathogen Candida albicans. The Cell Surface, 7, 2468-2330.
https://doi.org/10.1016/j.tcsw.2021.100057
[4]  范月蕾, 王恒哲, 杨露, 毛开云. 抗真菌药物的发展态势分析[J]. 生物产业技术, 2015(2): 88-92.
[5]  张莉, 张永信. 抗真菌药物的开发历程与研究进展[J]. 上海医药, 2011, 32(7): 326-329.
[6]  Healey, K.R. and Perlin, D.S. (2018) Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata. Journal of Fungi, 4, Article No. 105.
https://doi.org/10.3390/jof4030105
[7]  Ping, B., Zhu, Y., Gao, Y., Yue, C. and Wu, B. (2013) Second-Versus First-Generation Azoles for Antifungal Prophylaxis in Hematology Patients: A Systematic Review and Meta-Analysis. Annals of Hematology, 92, 831-839.
https://doi.org/10.1007/s00277-013-1693-5
[8]  刘丽, 李新利, 柴晓云, 赵风兰, 孟庆国. 1,3,4-噻二唑取代的氮唑类化合物的合成及体外抗真菌活性[J]. 烟台大学学报(自然科学与工程版), 2021, 34(1): 29-34.
[9]  梁伦海, 刘丽, 张胜男, 等. 新型氮唑衍生物的合成及体外抗真菌活性[J]. 烟台大学学报(自然科学与工程版), 2022, 35(1): 35-41.
[10]  武锬洋, 王轲, 王朝明, 柴晓云. 新型氮唑类化合物的合成及抗真菌活性研究[J]. 药学服务与研究, 2020, 20(1): 12-15.
[11]  陈勇, 魏文博, 段坤坤, 等. 基于2’, 4’-二氟联苯基的新型1,2,4-三氮唑类化合物的合成及其抗真菌活性[J]. 华中师范大学学报(自然科学版), 2020, 54(6): 982-989.
[12]  Blokhina, S.V., Sharapova, A.V., Ol’khovich, M.V., et al. (2021) Synthesis and Antifungal Activity of New Hybrids Thiazolo [4,5-d] Pyrimidines with (1H-1,2,4) Triazole. Bioorganic & Medicinal Chemistry Letters, 40, Article No. 127944.
https://doi.org/10.1016/j.bmcl.2021.127944
[13]  Xu, H., Mou, Y., Guo, M., et al. (2022) Discovery of Novel Selenium-Containing Azole Derivatives as Antifungal Agents by Exploiting the Hydrophobic Cleft of CYP51. European Journal of Medicinal Chemistry, 243, Article No. 114707.
https://doi.org/10.1016/j.ejmech.2022.114707
[14]  Cowen, L.E., Sanglard, D., Howard, S.J., Rogers, P.D. and Perlin, D.S. (2015) Mechanisms of Antifungal Drug Resistance. Cold Spring Harbor Perspectives in Medicine, 5, Article No. a019752.
https://doi.org/10.1101/cshperspect.a019752
[15]  Bhattacharya, S., Esquivel, B.D. and White, T.C. (2018) Overexpression or Deletion of Ergosterol Biosynthesis Genes Alters Doubling Time, Response to Stress Agents, and Drug Susceptibility in Saccharomyces cerevisiae. mBio, 9, e01291-18.
https://doi.org/10.1128/mBio.01291-18
[16]  Verma, A.K., Majid, A., Hossain, M., et al. (2022) Identification of 1, 2, 4-Triazine and Its Derivatives against Lanosterol 14-Demethylase (CYP51) Property of Candida albicans: Influence on the Development of New Antifungal Therapeutic Strategies. Frontiers in Medical Technology, 4, Article 845322.
https://doi.org/10.3389/fmedt.2022.845322
[17]  Derkacz, D., Bernat, P. and Krasowska, A. (2022) K143R Amino Acid Substitution in 14-α-Demethylase (Erg11p) Changes Plasma Membrane and Cell Wall Structure of Candida albicans. International Journal of Molecular Sciences, 23, Article No. 1631.
https://doi.org/10.3390/ijms23031631
[18]  Branco, J., Ola, M., Silva, R.M., et al. (2017) Impact of ERG3 Mutations and Expression of Ergosterol Genes Controlled by UPC2 and NDT80 in Candida parapsilosis Azole Resistance. Clinical Microbiology and Infection, 23, 575.e1-575.e8.
https://doi.org/10.1016/j.cmi.2017.02.002
[19]  Banerjee, A., Rahman, H., Prasad, R. and Golin, J. (2022) How Fungal Multidrug Transporters Mediate Hyperresistance Through DNA Amplification and Mutation. Molecular Microbiology, 118, 3-15.
https://doi.org/10.1111/mmi.14947
[20]  芦现杰, 郑玉果, 周斌. 真菌对唑类药物耐药机制研究进展[J]. 世界临床药物, 2012, 33(6): 363-368.
[21]  Song, J.X., Zhou, J.W., Zhang, L. and Li, R. (2020) Mitochondria-Mediated Azole Drug Resistance and Fungal Pathogenicity: Opportunities for Therapeutic Development. Microorganisms, 8, Article No. 1574.
https://doi.org/10.3390/microorganisms8101574
[22]  Shingu-Vazquez, M. and Traven, A. (2011) Mitochondria and Fungal Pathogenesis: Drug Tolerance, Virulence, and Potential for Antifungal Therapy. Eukaryotic Cell, 10, 1376-1383.
https://doi.org/10.1128/EC.05184-11
[23]  Siscar-Lewin, S., Gabaldón, T., Aldejohann, A.M., et al. (2021) Transient Mitochondria Dysfunction Confers Fungal Cross-Resistance against Phagocytic Killing and Fluconazole. mBio, 12, e01128-21.
https://doi.org/10.1128/mBio.01128-21
[24]  Hossain, S., Veri, A.O., Liu, Z., et al. (2021) Mitochondrial Perturbation Reduces Susceptibility to Xenobiotics through Altered Efflux in Candida albicans. Genetics, 219, Article No. iyab095.
https://doi.org/10.1093/genetics/iyab095
[25]  Neubauer, M., Zhu, Z.J., Penka, M., et al. (2015) Mitochondrial Dynamics in the Pathogenic Mold Aspergillus fumigatus: Therapeutic and Evolutionary Implications. Molecular Microbiology, 98, 930-945.
https://doi.org/10.1111/mmi.13167
[26]  Pais, P., Galocha, M., Califórnia, R., et al. (2022) Characterization of the Candida glabrata Transcription Factor CgMar1: Role in Azole Susceptibility. Journal of Fungi, 8, Article No. 61.
https://doi.org/10.3390/jof8010061
[27]  Chen, M.C., Zhong, G.W., Wang, S., Chen, P. and Li, L. (2022) Deletion of cox7c Results in Pan-Azole Resistance in Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 66, e00151-22.
https://doi.org/10.1128/aac.00151-22
[28]  Li, Y., Zhang, Y.W., Zhang, C., et al. (2020) Mitochondrial Dysfunctions Trigger the Calcium Signaling-Dependent Fungal Multidrug Resistance. Proceedings of the National Academy of Sciences of the United States of America, 117, 1711-1721.
https://doi.org/10.1073/pnas.1911560116
[29]  Juvvadi, P.R., Lee, S.C., Heitman, J. and Steinbach, W.J. (2017) Calcineurin in Fungal Virulence and Drug Resistance: Prospects for Harnessing Targeted Inhibition of Calcineurin for an Antifungal Therapeutic Approach. Virulence, 8, 186-197.
https://doi.org/10.1080/21505594.2016.1201250
[30]  Gonzalez-Jimenez, I., Lucio, J., Roldan, A., Alcazar-Fuoli, L. and Mellado, E. (2021) Are Point Mutations in HMG-CoA Reductases (Hmg1 and Hmg2) a Step towards Azole Resistance in Aspergillus fumigatus? Molecules, 26, Article No. 5975.
https://doi.org/10.3390/molecules26195975

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133