|
基于有限差分法的射频大地电磁二维正演模拟
|
Abstract:
在大多数二维地电模型中,考虑到射频大地电磁响应不存在解析解,本文建立了均匀网格有限差分正演模拟算法。首先,从电磁场满足的变系数亥姆霍兹方程边值问题出发,导出了有限差分法控制方程的离散表达式,并对边界条件近似处理后求解线性方程组得到射频大地电磁场数值解。其次,对均匀半空间模型进行模拟计算,且与解析法计算结果对比,验证了射频大地电磁有限差分正演算法的正确性和稳定性。最后,模拟计算了射频大地电磁典型二维地电模型的响应,总结了异常响应规律,为实测数据的定性解释提供指导。
In the most two-dimensional geo-electric model, there are no analytical solutions for radio-mag- netotelluric responses, so the uniform-meshes finite difference algorithm was developed for numerical results in this paper. Firstly, from the boundary value problem of variable coefficient Helmholtz equation for electric field and magnetic field, the discrete expressions of governing equation are derived from finite difference method. The numerical solutions of electric field and magnetic field are calculated after the approximate treatment on the boundary conditions. Se-condly, through the simulation of homogeneous half-space model and compared with the analytical results, the correctness and stability of the finite difference forward algorithm are verified. Lastly, by the numerical simulation for a two-dimensional model, radio-magnetotelluric responses were summarized, which can provide for qualitative interpretation of field data.
[1] | Shan, C.L., Bastani, M., Malehmir, A., et al. (2016) Integration of Controlled-Source and Radio-Magnetotellurics, Electric Resistivity Tomography, and Reflection Seismics to Delineate 3D Structures of a Quick-Clay Landslide Site in Southwest of Sweden. Geophysics, 81, 13-29. https://doi.org/10.1190/geo2014-0386.1 |
[2] | Wang, S.G., Malehmir, A., Bastani, M., et al. (2016) Geophysical Characterization of Areas Prone to Quick-Clay Landslides Using Radio-Magnetotelluric and Seismic Methods. Tectonophysics, 577-578, 248-260.
https://doi.org/10.1016/j.tecto.2016.04.020 |
[3] | Tezkan, B., H?rdt, A. and Gobashy, M. (2000) Two-Dimensional Radio-Magnetotelluric Investigation of Industrial and Domestic Waste Sites in Germany. Journal of Applied Geophysics, 44, 237-256.
https://doi.org/10.1016/S0926-9851(99)00014-2 |
[4] | Mehta, S., Bastani, M., Malehmir, A., et al. (2017) Resolution and Sensitivity of Boat-Towed RMT Data to Delineate Fracture Zones—Example of the Stockholm Bypass Multi-Lane Tunnel. Journal of Applied Geophysics, 139, 131-143.
https://doi.org/10.1016/j.jappgeo.2017.02.012 |
[5] | Linde, N. and Pedersen, L.B. (2004) Characterization of a Fractured Granite Using Radio Magnetotelluric (RMT) Data. Geophysics, 69, 1155-1165. https://doi.org/10.1190/1.1801933 |
[6] | 易柯, 张志勇, 李曼, 等. 基于FCM聚类算法的二维RMT电阻率与介电常数联合反演[J]. 地球物理学报, 2022, 65(6): 2340-2350. |
[7] | 原源, 汤井田, 任政勇, 等. 基于非结构化网格的任意复杂2DRMT有限元模拟[J]. 地球物理学报, 2015, 58(12): 4686-4695. |
[8] | Pek, J. and Verner, T. (1997) Finite-Difference Modelling of Magnetotelluric Fields in Two-Dimensional Anisotropic Media. Geophysical Journal International, 128, 505-521. https://doi.org/10.1111/j.1365-246X.1997.tb05314.x |
[9] | De Groot-Hedlin, C. (2006) Finite-Difference Modelling of Magnetotelluric Fields: Error Estimates for Uniform and Nonuniform Grids. Geophysics, 71, 97-106. https://doi.org/10.1190/1.2195991 |
[10] | 薛帅, 白登海, 唐静, 等. 耦合PML边界条件的三维大地电磁二次场有限差分法[J]. 地球物理学报, 2017, 60(1): 337-348. |
[11] | 童孝忠, 吴思洋, 谢维. 基于有限差分法的大地电磁二维倾子响应计算[J]. 工程地球物理学报, 2018, 15(4): 485-491. |
[12] | 童孝忠, 吴思洋, 谢维. 利用非均匀网格有限差分法模拟二维大地电磁响应[J]. 工程地球物理学报, 2018, 15(3): 338-346. |
[13] | Kalscheuer, T., Pedersen, L.B. and Siripunvaraporn, W. (2008) Radiomagnetotelluric Two-Dimensional Forward and Inverse Modelling Accounting for Displacement Currents. Geophysical Journal International, 175, 486-514.
https://doi.org/10.1111/j.1365-246X.2008.03902.x |
[14] | 周武, 罗威, 蓝星, 简兴祥. 大地电磁交错采样有限差分二维正反演研究[J]. 物探与化探, 2021, 45(2): 458-465. |
[15] | 陈斌. 大地电磁测深TM模式二维有限差分正演研究[J]. 能源与环境, 2016(4): 17+21. |
[16] | 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994. |