|
山西省粮食产量预测研究
|
Abstract:
本文基于2000~2017年山西省粮食产量数据分别构建了灰色预测模型、残差修正的灰色预测模型以及灰色线性组合模型,并预留2018~2021年的粮食产量数据进行预测精度检验。研究表明:灰色线性组合模型优于单一的灰色预测模型。灰色预测模型、残差修正的灰色预测模型以及灰色线性组合模型的平均绝对百分比预测分别为12.01%、11.99%、4.49%,拟合精度分别为87.99%、88.01%、95.51%,灰色线性组合模型的预测精度较灰色预测模型其预测精度提高了62.61%。
This paper constructs a gray forecasting model, a residual-corrected gray forecasting model and a gray linear combination model based on 2000~2017 grain yield data in Shanxi Province, respectively, and sets aside 2018~2021 grain yield data for testing the forecasting accuracy. The study shows that the gray linear combination model is better than the single gray forecasting model. The average absolute percentage forecasts of the gray forecasting model, the residual-corrected gray forecasting model, and the gray linear combination model were 12.01%, 11.99%, and 4.49%, respectively, and the fitting accuracy was 87.99%, 88.01%, and 95.51%, respectively, and the forecasting accuracy of the gray linear combination model improved by 62.61% compared with that of the gray forecasting model.
[1] | 姜长云. 影响我国粮食安全的新趋势新问题[J]. 人民论坛·学术前沿, 2022(4): 94-100. |
[2] | 李锁强. 粮食产量创历史新高农业生产结构进一步优化[N]. 中国信息报, 2020-01-20(002). |
[3] | 许德刚, 邢奎杰, 李凡, 郭奕欣. 粮食产量影响因素分析及预测方法研究[J]. 粮食与油脂, 2022, 35(10): 46-50. |
[4] | Hansen, P.M., J?rgensen, J.R. and Thomsen, A. (2002) Predicting Grain Yield and Protein Content in Winter Wheat and Spring Barley Using Repeated Canopy Reflectance Measurements and Partial Least Squares Regression. The Journal of Agricultural Science, 139, 307-318. https://doi.org/10.1017/S0021859602002320 |
[5] | Le Bail, M., Jeuffroy, M.H., Bouchard, C. and Barbottin, A. (2005) Is It Possible to Forecast the Grain Quality and Yield of Different Varieties of Winter Wheat from Minolta SPAD Meter Measurements? European Journal of Agronomy, 23, 379-391. https://doi.org/10.1016/j.eja.2005.02.003 |
[6] | Mkhabela, M.S., Bullock, P., Raj, S., Wang, S. and Yang, Y. (2011) Crop Yield Forecasting on the Canadian Prairies Using MODIS NDVI Data. Agricultural and Forest Meteorology, 151, 385-393.
https://doi.org/10.1016/j.agrformet.2010.11.012 |
[7] | 郭晓婷. 基于多元回归分析的安徽省粮食产量预测方法研究[D]: [硕士学位论文]. 合肥: 安徽农业大学, 2017. |
[8] | 李铭, 方华. 山东省粮食产量影响因素探究及产量预测[J]. 农场经济管理, 2022(5): 34-39. |
[9] | 雷蕾, 李婷, 李鹄. 基于灰色GM(1,1)的四川粮食产量预测研究[J]. 粮食问题研究, 2022(2): 21-24. |
[10] | 孟凡琳. 基于改进灰色模型的河南省粮食安全量化分析[D]: [硕士学位论文]. 郑州: 河南农业大学, 2017. |
[11] | 陈祺琪, 李君, 梁保松. 基于灰色多元线性回归的河南省粮食产量预测[J]. 河南农业大学学报, 2012, 46(4): 449-452. |
[12] | 薛晋芳. 山西省粮食产量的分析及预测研究[D]: [硕士学位论文]. 太原: 山西大学, 2016. |
[13] | 陈婷怡, 王皓晔. 基于组合预测法对云南省粮食产量的预测[J]. 科学技术创新, 2022(17): 36-39. |
[14] | 戴剑勇, 郭睿. 基于组合预测模型的煤炭能源消费总量预测[J]. 南华大学学报, 2019, 20(3): 21-23. |