|
荧光Cy5DNA扩增及酶切产物分离–检测
|
Abstract:
dNTPs加入一定比例Cy5-dATP可以扩增荧光Cy5DNA,用于T5外切酶(T5exo)类DNA酶检测,关键是酶切产物分离–检测。[方法]本研究以1/1000 Cy5-dATP的dNTPs扩增5851 bp荧光Cy5DNA pET28a-xyn。基于纯化柱吸附DNA原理,首先确定2倍P3缓冲液(2×P3)为纯化柱吸附DNA最小用量,进而用纯化柱以2×P3分离Cy5DNA溶液、等量Cy5DNA经T5exo酶切反应液(Cy5DNA-T5exo),分别得到洗脱液(含有Cy5DNA)和滤出液(含有酶切产物Cy5-dATP)。[结果]酶标仪定量检测显示,含120 ng Cy5DNA洗脱液荧光值5824、滤出液0。含120 ng Cy5DNA-T5exo滤出液荧光值7573、洗脱液0。激光共聚焦显微镜定性检测显示,Cy5DNA洗脱液有荧光、滤出液无。Cy5DNA-T5exo滤出液有荧光、洗脱液无。定量和定性检测结果与纯化柱吸附DNA、滤出酶切产物原理和功能相同。进而分析了Cy5DNA浓度、Cy5-dATP浓度与荧光值的定量关系。[结论]荧光Cy5DNA成功扩增,其酶切产物经纯化柱以2×P3成功分离,为荧光DNA扩增和用于DNA酶活性检测奠定了基础。
[Objective] Amplified with dNTPs added with a specific ratio of fluorescent Cy5-dATP, fluorescent Cy5DNA can assay exonuclease such as T5 DNA exonuclease (T5exo), key is separation-detection of digestion product. [Method] Amplified with dNTPs added with 1/1000 Cy5-dATP, a 5851 bp fluorescent Cy5DNA pET28a-xyn served for T5exo digestion. Basing on DNA-absorbing principle of DNA-clean column, a 2-flod buffer P3 (2×P3) that of DNA solution was determined as the least quantity of a column to absorb DNA. Next, a DNA-clean column with 2×P3 served to separate a solution containing Cy5DNAs or equal amount of Cy5DNAs digested by T5exo to collect filtrate and elute, respectively.[Result] Assayed by a microreader SpectraMax? i3x, the filtrate and elute from 120 ng Cy5DNAs-T5exo solution had a fluorescence value of 7573 and 0, respectively. The elute and filtrate from 120 ng Cy5DNA solution had a fluorescence value of 5824 and 0, respectively. Assayed by a con-focal microscope, the filtrate from Cy5DNA-T5exo solution exhibited Cy5-dATP fluorescence, while the elute did not. The elute from Cy5DNA solution exhibited Cy5 fluorescence, while the filtrate did not. Both the quantity and the quality assay were in agreement with the principle and usage of DNA-clean column. Additionally, correlation was analyzed for concentration of Cy5DNA and Cy5-dATP with fluorescence intensity. [Conclusion] Cy5DNA pET28a-xyn was amplified successfully, and its T5exo digestion product Cy5-dATP was separated by a DNA-clean column with a 2×P3 buffer. The study provided a basis for fluorescent DNA amplification and usage in assaying DNA-cutting enzyme.
[1] | Joseph, J.W. and Kolodner, R. (1983) Exonuclease VIII of Escherichia coli II. Mechanism of Action. Journal of Biological Chemistry, 258, 10418-10424. https://doi.org/10.1016/S0021-9258(17)44473-5 |
[2] | Joseph, J.W. and Kolodner, R. (1983) Exonuclease VIII of Escherichia coli I. Purification and Physical Properties. Journal of Biological Chemistry, 258, 10411-10417. https://doi.org/10.1016/S0021-9258(17)44472-3 |
[3] | Sayers, J. and Eckstein, F. (1990) Properties of Overexpressed Phage T5 D15 Exonuclease Similarities with Escherichia coli DNA Polymerase I 5’-3’ Exonuclease. Journal of Biological Chemistry, 265, 18311-18317.
https://doi.org/10.1016/S0021-9258(17)44753-3 |
[4] | Ma, X., Hong, Y., Han, W., et al. (2011) Single-Stranded DNA Binding Activity of XPBI, but Not XPBII, from Sulfolobus tokodaii Causes Double-Stranded DNA Melting. Extremophiles, 15, 67-76.
https://doi.org/10.1007/s00792-010-0338-z |
[5] | Richardson, C.C. (1966) The 5’-Terminal Nucleotides of T7 Bacteriophage Deoxyribonucleic Acid. Journal of Molecular Biology, 15, 49-61. https://doi.org/10.1016/S0022-2836(66)80208-5 |
[6] | Richardson, C.C., Inman, R.B. and Kornberg, A. (1964) Enzymatic Synthesis of Deoxyribonucleic Acid, XVIII the Repair of Partially Single-Stranded DNA Templates by DNA Polymerase. Journal of Molecular Biology, 9, 46-69.
https://doi.org/10.1016/S0022-2836(64)80090-5 |
[7] | 刘静波. 临床医学与研究中的放射性同位素——用测定还是用测定[J]. 国际放射医学核医学杂志, 1990, 14(1): 45-46. |
[8] | Tolun, G. and Myers, R.S. (2003) A Real-Time DNase Assay (ReDA) Based on PicoGreen Fluorescence. Nucleic Acids Research, 31, e111. https://doi.org/10.1093/nar/gng111 |
[9] | Zhang, J., Xing, X., Herr, A.B. and Bell, C.E. (2009) Crystal Structure of E. Crystal Structure of E. coli RecE Protein Reveals a Toroidal Tetramer for Processing Double-Stranded DNA Breaks. Structure, 17, 690-702.
https://doi.org/10.1016/j.str.2009.03.008 |
[10] | Druml, B., Kaltenbrunner, M., Hochegger, R., et al. (2016) A Novel Reference Real-Time PCR Assay for the Relative Quantification of (Game) Meat Species in Raw and Heat-Processed Food. Food Control, 70, 392-400.
https://doi.org/10.1016/j.foodcont.2016.05.055 |
[11] | Carr, A.C. and Moore, S.D. (2012) Robust Quantification of Polymerase Chain Reactions Using Global Fitting. PLOS ONE, 7, e37640. https://doi.org/10.1371/journal.pone.0037640 |
[12] | Kubista, M. andrade, J.M., Bengtsson, M., et al. (2006) The Real-Time Polymerase Chain Reaction. Molecular Aspects of Medicine, 27, 95-125. https://doi.org/10.1016/j.mam.2005.12.007 |
[13] | 王楷宬, Linda van der Graaf, 陆承平, 等. 猪链球菌荧光DNA扩增片段长度多态性检测方法的建立[J]. 中国兽医学报, 2012, 32(10): 1498-1501. |
[14] | 李倩倩, 赵福杰, 丁庆文, 等. 猪萨佩罗病毒实时荧光定量检测方法的建立[J]. 西北农林科技大学学报自然科学版, 2021, 49(11): 10-16. |
[15] | Marcussen, L.B., Jepsen, M.L., Kristoffersen, E.L., et al. (2013) DNA-Based Sensor for Real-Time Measurement of the Enzymatic Activity of Human Topoisomerase. Sensors (Basel), 13, 4017-4028. https://doi.org/10.3390/s130404017 |
[16] | Zhao, B., Tong, Z.X., Zhao, G.J., et al. (2014) Effects of 2’-O-methyl Nucleotide on Ligation Capability of T4 DNA Ligase. Acta Biochimica et Biophysica Sinica, 46, 727-737. https://doi.org/10.1093/abbs/gmu058 |
[17] | 姚亭秀. 四代DNA测序技术简述[J]. 生物学通报, 2017, 52(2): 5-8. |
[18] | 宋沁馨, 周国华. 用Cy5-ddNTP结合修饰引物延伸测定人类3种SNP[J]. 中国药科大学学报, 2006, 37(6): 569-572. |
[19] | Li, X., Jin, J., Wang, M., et al. (2022) Abortive Ligation Intermediate Blocks Seamless Repair of Double-Stranded Breaks. International Journal of Biological Macromolecules, 209, 1498-1503.
https://doi.org/10.1016/j.ijbiomac.2022.04.098 |
[20] | Sangon Biotech (2021) Diamond, DiaSpin PCR Product Purification Kit. User Manual, V 1.0. 12-15. |
[21] | Yang, A., Cheng, J., Liu, M., et al. (2018) Sandwich Fusion of CBM9_2 to Enhance Xylanase Thermostability and Activity. International Journal of Biological Macromolecules, 117, 586-591.
https://doi.org/10.1016/j.ijbiomac.2018.05.199 |
[22] | 黄亚威, 贺添艳, 杨昂, 等. 双退火温度PCR扩增DNA[J]. 微生物学报, 2017, 57(8): 1262-1269. |
[23] | 邵玉强, 金家铖, 李雪刚, 刘亮伟. 大量-高纯-高浓度DNA的制备[J]. 微生物前沿, 2022, 11(2): 67-74.
https://doi.org/10.12677/amb.2022.112008 |
[24] | Wang, H., Li, Z., Jia, R., et al. (2017) ExoCET Exonuclease in Vitro Assembly Combined with RecET Recombination for Highly Efficient Direct DNA Cloning from Complex Genomes. Nucleic Acids Research, 46, e28.
https://doi.org/10.1093/nar/gkx1249 |
[25] | Bajar, B.T., Wang, E.S., Zhang, S., Lin, M.Z. and Chu, J. (2016) A Guide to Fluorescent Protein FRET Pairs. Sensors, 16, 1488. https://doi.org/10.3390/s16091488 |