All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles


From Structure to Function: Brain Science from the Perspective of Complex Networks

DOI: 10.12677/ISL.2022.64010, PP. 78-83

Keywords: 复杂网络,脑连接性
Complex Network
, Brain Connectivity

Full-Text   Cite this paper   Add to My Lib


Currently in the field of brain science, despite many breakthroughs, our understanding of complex brain functions and cognitive principles and mechanisms is still incomplete. Complex networks, as a concept to describe the structure of complex systems, were introduced into brain science to explain these issues. This paper introduces the related concepts of complex networks, and reviews the manifestation and significance of complex networks in brain science, in order to better promote the application of this tool in brain science.


[1]  蒲慕明, 徐波, 谭铁牛. 脑科学与类脑研究概述[J]. 中国科学院院刊, 2016, 31(7): 725-736+714.
[2]  周涛, 柏文洁, 汪秉宏, 刘之景, 严钢. 复杂网络研究概述[J]. 物理, 2005, 34(1): 31-36.
[3]  刘涛, 陈忠, 陈晓荣. 复杂网络理论及其应用研究概述[J]. 系统工程, 2005, 23(6): 1-7.
[4]  Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442.
[5]  Barabási, A.L. and Albert, R. (1999) Emergence of Scaling in Random Net-works. Science, 286, 509-512.
[6]  Schwarz, A.J., Gozzi, A. and Bifone, A. (2008) Community Structure and Modularity in Networks of Correlated Brain Activity. Magnetic Resonance Imaging, 26, 914-920.
[7]  Chen, Z.J., He, Y., Rosa-Neto, P., et al. (2008) Revealing Modular Architecture of Human Brain Structural Networks by Using Cortical Thickness from MRI. Cerebral Cortex, 18, 2374-2381.
[8]  Ferrarini, L., Veer, I.M., Baerends, E., et al. (2009) Hier-archical Functional Modularity in the Resting-State Human Brain. Human Brain Mapping, 30, 2220-2231.
[9]  McIntosh, A.R. and Korostil, M. (2008) Interpretation of Neuroimaging Data Based on Network Concepts. Brain Imaging and Behavior, 2, 264-269.
[10]  Sporns, O., Tononi, G. and K?tter, R. (2005) The Human Con-nectome: A Structural Description of the Human Brain. PLoS Computational Biology, 1, e42.
[11]  Friston, K.J. (1994) Functional and Effective Connectivity in Neuroimaging: A Synthesis. Human Brain Mapping, 2, 56-78.
[12]  Cook, S.J., Jarrell, T.A., Brittin, C.A., et al. (2019) Whole-Animal Connectomes of both Caenorhabditis elegans Sexes. Nature, 571, 63-71.
[13]  Bullmore, E. and Sporns, O. (2012) The Economy of Brain Network Organization. Nature Reviews Neuroscience, 13, 336-349.
[14]  Hofman, M.A. (2012) Design Principles of the Human Brain: An Evolution-ary Perspective. Progress in Brain Research, 195, 373-390.
[15]  Wang, R., Liu, M., Cheng, X., et al. (2021) Segregation, Integration, and Balance of Large-Scale Resting Brain Networks Configure Different Cognitive Abilities. Proceedings of the National Academy of Sciences, 118, e2022288118.
[16]  Buckner, R.L. andrews-Hanna, J.R. and Schacter, D.L. (2008) The Brain’s Default Network: Anatomy, Function, and Relevance to Disease. Annals of the New York Academy of Sciences, 1124, 1-38.
[17]  Anticevic, A., Cole, M.W., Murray, J.D., et al. (2012) The Role of Default Network Deactivation in Cognition and Disease. Trends in Cognitive Sciences, 16, 584-592.
[18]  Liao, X., Vasilakos, A.V. and He, Y. (2017) Small-World Human Brain Networks: Perspectives and Challenges. Neuroscience & Biobehavioral Reviews, 77, 286-300.
[19]  Medaglia, J.D., Huang, W., Karuza, E.A., et al. (2018) Func-tional Alignment with Anatomical Networks Is Associated with Cognitive Flexibility. Nature Human Behaviour, 2, 156-164.
[20]  Adachi, Y., Osada, T., Sporns, O., et al. (2012) Func-tional Connectivity between Anatomically Unconnected Areas Is Shaped by Collective Network-Level Effects in the Ma-caque Cortex. Cerebral Cortex, 22, 1586-1592.
[21]  Paquola, C., Amunts, K., Evans, A., et al. (2022) Closing the Mechanis-tic Gap: The Value of Microarchitecture in Understanding Cognitive Networks. Trends in Cognitive Sciences, 26, 873-886.
[22]  Bassett, D.S. and Sporns, O. (2017) Network Neuroscience. Nature Neuroscience, 20, 353-364.
[23]  Ito, T., Hearne, L., Mill, R., et al. (2020) Discovering the Computational Rel-evance of Brain Network Organization. Trends in Cognitive Sciences, 24, 25-38.
[24]  Suárez, L.E., Richards, B.A., Lajoie, G., et al. (2021) Learning Function from Structure in Neuromorphic Networks. Nature Machine Intelligence, 3, 771-786.
[25]  Comolatti, R. and Hoel, E. (2022) Causal Emergence Is Wide-spread across Measures of Causation.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413