|
PhET互动仿真程序在中学数学教学中的应用
|
Abstract:
PhET互动仿真程序是一款开源、互动游戏式的学习软件,旨在通过免费的互动模拟平台推动全球科学和数学教育的发展,其中与应用数学相联系的程序是拓展中学数学教学路径的切入点。本文归纳总结PhET仿真平台的特点,探讨PhET互动仿真程序应用价值,挖掘PhET在应用与开发过程中与元认知提示语相联系的创新点,并将其在中学数学中的应用(以《任意角的三角函数概念》和《二项分布》为例)进行详细解释说明。PhET互动仿真程序能够促进学生对抽象知识的本质理解,培养数学应用意识,拓展应用数学思维,提升数学核心素养与关键能力的发展,为跨学科教育与中学数学相融合提供了新的思路,为信息技术与教育相融合提供了一条可行的实践路径。
The PhET interactive simulation is an open source, interactive game learning platform, which aims to promote the development of global science and mathematics education through free interactive simulation. The simulation associated with applied mathematics provides a perfect introduction to expand the path of mathematics teaching in middle schools. In this study, the characteristics of PhET simulation were induced and summarized, the application value of PhET simulation was dis-cussed, and the innovation of PhET related to metacognitive prompts was explored. What’s more, the application of PhET interactive simulation program in middle school mathematics (take “The Concept of Trigonometric Function at Arbitrary Angle” and “Binomial Distribution” as examples) was explained in details. PhET interactive simulation is able to facilitate students’ understanding of the essence of abstract knowledge, develop mathematics application awareness, expand applied mathematical thinking and cultivate the development of mathematics core literacy and key abili-ties. Further, it can provide new ideas for the integration of interdisciplinary education and middle school mathematics, and a feasible practical path for the integration of information technology and education.
[1] | Wieman, C.E., Adams, W.K. and Perkins, K.K. (2008) PhET: Simulations That Enhance Learning. Journal of Science, 322, 682-683. https://doi.org/10.1126/science.1161948 |
[2] | 李刚. 改变STEM教育故事, 面向STEM教育未来——第六届国际STEM教育大会(2021)述评[J]. 数学教育学报, 2022, 31(3): 88-93. |
[3] | 李刚, 吕立杰. 实现真正的STEM教育: 来自科学实践哲学视角的理解[J]. 中国教育科学, 2021, 4(2): 84-91. |
[4] | 杨婉秋, 李淑文. 美国信息技术与中学数学课堂教学“深度融合”的实践探索[J]. 外国中小学教育, 2019(8): 63-71. |
[5] | 韩龙淑. 专家型教师与熟手教师运用元认知提示语的数学课堂比较研究[J]. 数学教育学报, 2016, 25(4): 59-62. |
[6] | Carless, D. (2019) Feedback Loops and the Longer-Term: Towards Feedback Spirals. Journal of Assessment & Evaluation in Higher Education, 44, 705-714. https://doi.org/10.1080/02602938.2018.1531108 |
[7] | 傅赢芳, 喻平. 从数学本质出发设计课堂教学——基于数学核心素养培养的视域[J]. 教育理论与实践, 2019, 39(20): 41-43. |
[8] | 严兴光. 基于数学理解的三角函数概念教学[J]. 数学通报, 2021, 60(5): 21-24+59. |
[9] | 罗艺灵, 刘晓曼, 保继光. 维拉尼演讲中的高尔顿板和网页排序[J]. 数学通报, 2018, 57(10): 39-43. |