|
相对论流体力学方程的高分辨率熵相容格式
|
Abstract:
本文提出了一种求解相对论流体力学方程的高分辨率熵相容格式。新格式主要是由熵相容格式以及斜率限制器两个部分构成。首先设计了一个熵相容格式(EC格式)的数值通量。接着为了更好地捕捉到解的结构,建立了一个基于MUSCL (Monotone Upstream-centred Scheme for Conservation Laws)型重建方法的斜率限制器,并将它应用于熵相容格式中,从而得到了高分辨率熵相容格式(EC-Limited格式)。文中还证明了新构造的EC格式和EC-Limited格式的收敛性。在解的光滑区域,EC-Limited格式具有高精度的特性;而在解的间断区域,EC-Limited格式能够恰当地控制耗散,从而抑制非物理现象的发生。最后,对相对论流体力学方程的一维和二维算例进行数值模拟,证明了新格式的稳定性以及良好的性能。
A high-resolution entropy consistent scheme was developed for solving the relativistic hydrody-namics equations. The new scheme is composed of entropy consistent scheme and slope limiter. First, an entropy consistent numerical flux (EC scheme) was designed. In order to capture the struc-ture of the solution better, a slope limiter based on MUSCL (Monotone Upstream-centred Scheme for Conservation Laws) type reconstruction method is constructed, the high-resolution entropy con-sistent scheme is obtained by applying it to the entropy consistent scheme. The convergences of the EC scheme and EC-Limited scheme have been proved. For the smooth region of the solution, the EC-Limited scheme has the characteristics of high accuracy, and for the discontinuous region, it can precisely control the dissipation and restrain the occurrence of non-physical phenomena. Finally, several one and two-dimensional numerical experiments demonstrate the stability and good performance of the high-resolution entropy consistent scheme.
[1] | Lax, P.D. (1954) Weak Solutions of Non-Linear Hyperbolic Equations and Their Numerical Computations. Commu-nications on Pure and Applied Mathematics, 7, 159-193. https://doi.org/10.1002/cpa.3160070112 |
[2] | Lax, P.D. (1973) Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Society for Industrial and Applied Mathematics, University City, 1-48. https://doi.org/10.1137/1.9781611970562.ch1 |
[3] | Tadmor, E. (1987) The Numerical Viscosity of Entropy Stable Schemes for Systems of Conservation Laws. I. Mathematics of Computation, 49, 91-103. https://doi.org/10.1090/S0025-5718-1987-0890255-3 |
[4] | Roe, P.L. (2006) Entropy Conservation Schemes for Euler Equations. Talk at HYP 2006, Lyon. |
[5] | Ismail, F. and Roe, P.L. (2009) Affordable, Entropy-Consistent Euler Flux Functions II: Entropy Production at Shocks. Journal of Computational Physics, 228, 5410-5436. https://doi.org/10.1016/j.jcp.2009.04.021 |
[6] | 郑素佩, 李霄, 赵青宇, 封建湖. 求解二维浅水波方程的旋转混合格式[J]. 应用数学和力学, 2022, 43(2): 176-186. |
[7] | 任炯, 封建湖, 刘友琼, 梁楠. 求解双曲守恒律方程的高分辨率熵相容格式构造[J]. 计算物理, 2014, 31(5): 539-551. |
[8] | 刘友琼, 封建湖, 梁楠, 任炯. 求解浅水波方程的熵相容格式[J]. 应用数学和力学, 2013, 34(12): 1247-1257. |
[9] | 沈亚玲, 封建湖, 郑素佩, 等. 基于一种新型斜率限制器的理想磁流体方程的高分辨率熵相容格式[J/OL]. 计算物理, 1-15. http://kns.cnki.net/kcms/detail/11.2011.O4.20210825.1243.004.html, 2022-03-15. |
[10] | Yang, Z., He, P. and Tang, H. (2011) A Direct Eulerian GRP Scheme for Relativistic-Hydrodynamics: One-Dimensional Case. Journal of Computa-tional Physics, 230, 7964-7987. https://doi.org/10.1016/j.jcp.2011.07.004 |
[11] | Yang, Z. and Tang, H. (2012) A Direct Eulerian GRP Scheme for Relativistic Hydrodynamics: Two-Dimensional Case. Journal of Computational Phys-ics, 231, 2116-2139. https://doi.org/10.1016/j.jcp.2011.11.026 |
[12] | Zhao, J. and Tang, H. (2017) Runge-Kutta Discontinuous Galerkin Methods for the Special Relativistic Magnetohydrodynamics. Journal of Computational Physics, 343, 33-72. https://doi.org/10.1016/j.jcp.2017.04.027 |
[13] | Duan, J.M. and Tang, H.Z. (2020) High-Order Accurate Entropy Stable Finite Difference Schemes for One- and Two-Dimensional Special Relativistic Hydrodynamics. Advances in Applied Mathematics and Mechanics, 12, 1-29.
https://doi.org/10.4208/aamm.OA-2019-0124 |
[14] | 任璇, 封建湖, 郑素佩, 程晓晗. 求解双曲守恒律方程的熵相容格式[J]. 应用力学学报, 2021, 38(2): 560-565. |
[15] | Ryu, D., Chattopadhyay, I. and Choi, E. (2006) Equation of State in Numerical Relativistic Hydrodynamics. The Astrophysical Journal Supplement Series, 166, 410-420. https://doi.org/10.1086/505937 |
[16] | Gottlieb, S., Ketcheson, D.I. and Shu, C.W. (2009) High Order Strong Stability Preserving Time Discretizations. Journal of Scientific Computing, 38, 251-289. https://doi.org/10.1007/s10915-008-9239-z |
[17] | Barth, T.J. (1999) Numerical Methods for Gasdynamic Systems on Unstructured Meshes. Springer, Berlin, 195-285.
https://doi.org/10.1007/978-3-642-58535-7_5 |
[18] | Dubey, R.K. and Biswas, B. (2018) Suitable Diffusion for Con-structing Non-Oscillatory Entropy Stable Schemes. Journal of Computational Physics, 372, 912-930. https://doi.org/10.1016/j.jcp.2018.04.037 |
[19] | 任璇. 基于斜率限制器的高分辨率熵相容格式研究[D]: [硕士学位论文]. 西安: 长安大学, 2021. |