全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

厌氧同时产甲烷反硝化的研究进展
Advances in Simultaneous Methanogenesis and Denitrification in an Anaerobic Environment

DOI: 10.12677/AEP.2022.126143, PP. 1152-1162

Keywords: 反应机理,影响因素,研究现状,菌群分析
Reaction Mechanism
, Influence Factors, Research Status, Flora Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

同时产甲烷和短程反硝化过程由于能够在同一反应器中去除有机物和氮而引起人们的关注。近年来,该技术在实际和模拟废水处理中取得了较好的发展。本文分析了同时产甲烷反硝化(SMD)的机理,介绍了不同影响因素(碳源、C/N比、HRT、温度、pH)对反应过程的影响,综述了同时产甲烷反硝化工艺在不同反应器中的应用情况以及系统内微生物的群落结构分布,并且对近几年热门研究的微氧环境下同时产甲烷反硝化以及厌氧氨氧化进行介绍,为相关研究者与工程实践者提供借鉴。
Simultaneous methanogenesis and denitrification have attracted considerable attention because they can remove organics and nitrogen in a reactor. In recent years, the technology has made good progress in treating practical and simulated liquid water. In this paper, the mechanism of simultaneous methanogenesis and denitrification (SMD) was analyzed, the influence of different environmental conditions (carbon source, C/N ratio, HRT, temperature, pH) on the reactor was introduced, the application of simultaneous methanogenesis and denitrification in different reactors and the distribution of microbial community structure in the system were reviewed, and the simultaneous methanogenesis denitrification and ANAMMOX under micro-oxygen environment, which are popular researches in recent years, are introduced to provide references for relevant researchers and engineering practitioners.

References

[1]  冼萍, 李英比, 邓超冰, 等. 生活垃圾渗滤液对厌氧颗粒污泥产甲烷活性的影响研究[J]. 环境工程学报, 2009, 3(10): 1767-1772.
[2]  Tugtas, A.E., Tezel, U. and Pavlostathis, S.G. (2010) A Comprehensive Model of Simultaneous Denitrification and Methanogenic Fermentation Processes. Biotechnology and Bioengineering, 105, 98-108.
https://doi.org/10.1002/bit.22443
[3]  刁明月, 谢影, 彭绪亚, 等. 亚硝态氮对同时产甲烷反硝化工艺处理畜禽粪水的影响[J]. 环境工程学报, 2014, 8(4): 1333-1338.
[4]  Andalib, M., Nakhla, G., Mcintee, E. and Zhu, J. (2011) Simultaneous Denitrification and Methanogenesis (SDM): Review of Two Decades of Research. Desalination, 279, 1-14.
https://doi.org/10.1016/j.desal.2011.06.018
[5]  Lin, Y.-F. and Chen, K.-C. (1995) Denitrification and Methanogenesis in a Commobilized Mixed Culture System. Water Research, 29, 35-43.
https://doi.org/10.1016/0043-1354(94)00144-V
[6]  Bryant, M.P. (1979) Microbial Methane Produc-tion—Theoretical Aspects. Journal of Animal Science, 48, 193-201.
https://doi.org/10.2527/jas1979.481193x
[7]  Gallert, C. and Winter, J. (2008) Propionic Acid Accumulation and Degradation during Restart of a Full-Scale Anaerobic Biowaste Digester. Bioresource Technology, 99, 170-178.
https://doi.org/10.1016/j.biortech.2006.11.014
[8]  Zeikus, J.G. (1980) Microbial Population in Digesters. Applied Science Publishers, London.
[9]  祖波, 张代钧, 白玉华. EGSB反应器中耦合厌氧氨氧化与甲烷化反硝化的研究[J]. 环境科学研究, 2007, 20(2): 51-57.
[10]  林皓. 厌氧氨氧化-反硝化耦合处理合成革废水研究[J]. 水处理技术, 2020, 46(2): 98-103.
[11]  Zhang, D.J. (2003) The Integration of Methanogenesis with Denitrification and Anaerobic Ammonium Oxidation in an Expanded Granular Sludge Bed Reactor. Journal of Environmental Science, 15, 423-432.
[12]  Zhang, W., Zhang, Y.Y., Li, L., Zhang, X. and Jin, Y. (2014) Fast Start-Up of Expanded Granular Sludge Bed (EGSB) Reactor Using Stored Anammox Sludge. Water Science & Technology, 69, 1469-1474.
https://doi.org/10.2166/wst.2014.030
[13]  姜滢, 郭萌蕾, 谢军祥, 等. 不同培养条件厌氧氨氧化颗粒污泥性质及微生物群落结构差异[J]. 环境科学, 2020, 41(5): 2358-2366.
[14]  Wilderer, P.A., Jones, W.L. and Dau, U. (1987) Competion in Denitrification Systems Affecting Reduction Rate and Accumulation of Nitrite. Water Research, 21, 239-245.
https://doi.org/10.1016/0043-1354(87)90056-X
[15]  Akunna, J.C., Bizeau, C. and Moletta, R. (1993) Nitrate and Nitrate Reduction with Anaerobic Sludge Using Various Carbon Sources Glucose Glycerol Acetic Acid Lactic Acid and Methanol. Water Research, 27, 1303-1312.
https://doi.org/10.1016/0043-1354(93)90217-6
[16]  郭春明. 大豆蛋白废水处理技术研究的现状与展望[J]. 现代园艺, 2012(14): 38.
[17]  李宇庆, 马楫, 钱国恩. 制药废水处理技术进展[J]. 工业水处理, 2009, 29(12): 5-7.
[18]  姬保华, 万金泉, 马邕文, 等. 不同碳源对厌氧同时反硝化产甲烷的影响[J]. 工业水处理, 2017, 37(12): 87-90.
[19]  迟文涛, 江瀚, 王凯军. 厌氧悬浮颗粒污泥床同时反硝化产甲烷研究[J]. 中国沼气, 2007, 25(3): 10-13.
[20]  张永辉. 淀粉废水处理方法研究进展[J]. 广东化工, 2020, 47(20): 63-64.
[21]  刘昱. 中国农业生态系统的碳氮平衡模拟、耦合和政策评估[D]: [博士学位论文]. 北京: 清华大学, 2016.
[22]  Ramakrishnan, A. and Gupta, S.K. (2008) Effect of COD/NO3?-N Ratio on the Performance of a Hybrid UASB Reactor Treating Phenolic Wastewater. Desalination, 232, 128-138.
https://doi.org/10.1016/j.desal.2007.09.016
[23]  Hendriksen, H.V. and Ahring, B.K. (1996) Integrated Removal of Nitrate and Carbon in an Upflow Anaerobic Sludge(UASB) Reactor: Operating Performance. Water Research, 30, 1451-1458.
https://doi.org/10.1016/0043-1354(96)00041-3
[24]  Hendriksen, H.V. and Ahring, B.K. (1996) Combined Re-moval of Nitrate and Carbon in Granular Sludge: Substrate Competition and Activities. Antonie van Leeuwenhoek, 69, 33-39.
https://doi.org/10.1007/BF00641609
[25]  Hanaki, K. and Polprasert, C. (1989) Contribution of Methanogenesis to Denitrification with an Upflow Filter. Research Journal of the Water Pollution Control Federation, 61, 1604-1611.
[26]  Chen, K.-C. and Lin, Y.-F. (1993) The Relationship between Denitrifying Bacteria and Methanogenic Bacteria in a Mixed Culture System of Acclimated Sludge. Water Research, 27, 1749-1759.
https://doi.org/10.1016/0043-1354(93)90113-V
[27]  张希衡. 废水厌氧生物处理工程[M]. 北京: 中国环境科学出版社, 1996.
[28]  闵航, 等. 厌氧微生物学[M]. 杭州: 浙江大学出版社, 1993.
[29]  谢丽, 陈金荣, 周琪. 厌氧同时反硝化产甲烷研究进展[J]. 化工学报, 2011, 62(3): 589-597.
[30]  Ruiz, G., Jeison, D. and Chamy, R. (2006) Development of Denitrifying and Methanogenic Activities in USB Reactors for the Treatment of Wastewater: Effect of COD/N Ratio. Process Biochemistry, 41, 1338-1342.
https://doi.org/10.1016/j.procbio.2006.01.007
[31]  Akunna, J.C., Bizeau, C. and Moletta, R. (1992) Denitrification in Anaero-Bic Digesters: Possiblilities and Influence of Wastewater COD/N-NOx Ratio. Environmental Technology, 13, 825-836.
https://doi.org/10.1080/09593339209385217
[32]  Deng, G. and Shi, X. (2020) The Effects of Carbon Source and COD/N Ratio on Simultaneous Denitrification and Methanogenesis in an Upflow Anaerobic Sludge Blanket Reactor. Renewable Energy, 157, 867-873.
https://doi.org/10.1016/j.renene.2020.05.105
[33]  Meng, L., Wang, J., Li, X., Yu, Y. and Zhu, Y. (2021) Microbial Community and Molecular Ecological Network in the EGSB Reactor Treating Antibiotic Wastewater: Response to Environmental Factors. Ecotoxicology and Environmental Safety, 208, Article No. 111669.
https://doi.org/10.1016/j.ecoenv.2020.111669
[34]  Zhang, C., Wang, A., Jia, J., Zhao, L. and Song, W. (2017) Effect of Parameters on Anaerobic Digestion EGSB Reactor for Producing Biogas. Procedia Engineering, 205, 3749-3754.
https://doi.org/10.1016/j.proeng.2017.10.325
[35]  Liao, R.H., Miao, Y., Li, J., et al. (2018) Temper-ature Dependence of Denitrification Microbial Communities and Functional Genes in an Expanded Granular Sludge Bed Reactor Treating Nitrate-Rich Wastewater. RSC Advances, 8, 42087-42094.
https://doi.org/10.1039/C8RA08256A
[36]  Eriksen-Hamel, N.S. and Whalen, J.K. (2007) Impacts of Earthworms on Soil Nutrients and Plant Growth in Soybean and Maize Agroecosystems. Agriculture, Ecosystems & Environment, 120, 442-448.
https://doi.org/10.1016/j.agee.2006.11.004
[37]  初里冰, 张兴文, 李晓惠, 等. 微氧膜生物反应器同时去除有机物和氮的研究[J]. 环境污染治理技术与设备, 2005, 5(6): 78-82.
[38]  翟伟, 董春娟, 申曙光, 等. 处理焦化废水微氧EGSB反应器运行特性研究[J]. 工业水处理, 2012, 32(10): 43-46.
[39]  陈莉莉, 左剑恶, 楼俞. 微氧条件下同时产甲烷反硝化工艺的试验研究[J]. 中国给水排水, 2015, 31(21): 39-43.
[40]  游胜, 周兴求, 牛晓君, 等. IC反应器在微氧条件下的运行特性研究[J]. 中国给水排水, 2009, 25(9): 16-24.
[41]  董春娟, 潘青业, 孙亚全, 等. 两级微氧EGSB同步处理焦化废水和剩余污泥[J]. 中国给水排水, 2018, 34(17): 89-93.
[42]  An, Y.Y., Yang, F.L., Chua, H.C., Wong, F.S. and Wu, B. (2008) The Integration of Methanogenesis with Shortcut Nitrification and Denitrifacation in a Combined UASB with MBR. Bioresource Technology, 99, 3714-3720.
https://doi.org/10.1016/j.biortech.2007.07.020
[43]  袁志丹, 左剑恶, 甘海南, 等. 同时产甲烷反硝化与硝化串联工艺处理淀粉废水[J]. 环境科学学报, 2008, 28(7): 1272-1278.
[44]  陈莉莉, 左剑恶, 楼俞, 等. 同时产甲烷反硝化在UASB反应器中的实现[J]. 中国沼气, 2006, 24(2): 3-7.
[45]  赵蕾. EGSB-SBR处理果汁废水联合工艺及厌氧颗粒污泥物化特性研究[D]: [硕士学位论文]. 西安: 西安工程大学, 2011.
[46]  杨丽英, 刘伟东, 王红梅, 等. EGSB反应器处理抗生素制药废水的性能研究[J]. 工业水处理, 2020, 40(5): 52-56.
[47]  朱明, 尹芳, 刘健峰, 等. EGSB反应器处理低浓度猪粪废水的效能研究[J]. 云南师范大学学报(自然科学版), 2018, 38(3): 8-13.
[48]  陈晨. 处理不同C/N废水厌氧工艺的选择及机理研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2012.
[49]  Pozo, R. and Diez, V. (2003) Organic Matter Removal in Combined Anaerobic-Aerobic Fixed-Film Bioreactors. Water Research, 37, 3561-3568.
https://doi.org/10.1016/S0043-1354(03)00273-2
[50]  Bernet, N., Delgenes, N., Akunna, J.C., Delgenes, J.P. and Moletta, R. (2000) Combined Anaerobic-Aerobic SBR for the Treatment of Piggery Wastewater. Water Research, 34, 611-619.
https://doi.org/10.1016/S0043-1354(99)00170-0
[51]  Mosquera-Corral, A., Sanchez, M., Campos, J.L., Mendez, R. and Lema, J.M. (2001) Simultaneous Metnanogenesis and Denitrification of Pretreared Effluent from a Fish Caning Industry. Water Research, 35, 411-418.
https://doi.org/10.1016/S0043-1354(00)00288-8
[52]  Zhou, X., Wang, G., Ge, D. and Yin, Z. (2020) Development of Aerobic Methane Oxidation, Denitrification Coupled to Methanogenesis (AMODM) in a Microaerophilic Expanded Granular Sludge Blanket Biofilm Reactor. Journal of Environmental Management, 275, Article No. 111280.
https://doi.org/10.1016/j.jenvman.2020.111280
[53]  Vallee, B.L. and Ulmer, D.D. (1972) Biochemical Effects of Mercury, Cadmium, and Lead. Annual Review of Biochemistry, 41, 91-128.
https://doi.org/10.1146/annurev.bi.41.070172.000515
[54]  李健中. 重金属对生物脱氮除磷系统中微生物的毒性影响[D]: [硕士学位论文]. 广州: 广州大学, 2010.
[55]  Riggle, P.J. and Kumamoto, C.A. (2000) Role of a Candida albicans P1-Type ATPase in Resistance to Copper and Silver Ion Toxicity. Journal of Bacteriology, 182, 4899-4905.
https://doi.org/10.1128/JB.182.17.4899-4905.2000
[56]  孙峰, 翁焕新, 马学文, 等. 污泥中重金属和多环芳烃(PAHs)的存在特性及其相互关系[J]. 环境科学学报, 2008, 28(12): 2540-2548.
[57]  王菊思, 赵丽辉, 贾智萍, 等. 锌对厌氧体系的影响及5种重金属离子抑制作用的比较[J]. 环境科学, 1994, 15(2): 20-22.
[58]  可欣, 赵鑫, 李润东. 铜离子对猪粪厌氧消化性能的影响研究[J]. 可再生能源, 2013(7): 60-63+69.
[59]  段学军, 闵航. Cd胁迫下稻田土壤生物活性与酶活性综合研究[J]. 农业环境科学学报, 2004, 23(3): 422-427.
[60]  Stasinakis, A.S., Mamais, D., Thomaidis, N.S. and Lekkas, T.D. (2002) Effect of Chromium(VI) on Bacterial Kinetics of Heterotrophic Biomass of Activated Sludge. Water Research, 36, 3341-3349.
https://doi.org/10.1016/S0043-1354(02)00018-0
[61]  张然然. 重金属铜和锌对厌氧发酵过程中抗生素抗性基因影响机制研究[D]: [博士学位论文]. 咸阳: 西北农林科技大学, 2019.
[62]  黄奕亮. 短程硝化厌氧氨氧化联合处理垃圾渗滤液及重金属毒性效应研究[D]: [硕士学位论文]. 广州: 广州大学, 2018.
[63]  徐艳高. Cu2+对电活性生物膜葡萄糖发酵途径及膜微生物种群多样性的影响研究[D]: [硕士学位论文]. 广州: 广东工业大学, 2020.
[64]  韩晓宇, 彭永臻, 张树军, 等. 厌氧同时反硝化产甲烷工艺的应用及进展[J].中国给水排水, 2008, 24(6): 15-19.
[65]  Subramanian, S.B., Yan, S., Tyagi, R.D. and Surampalli, R.Y. (2010) Extracellular Polymeric Substances (EPS) Producing Bacterial Strains of Municipal Wastewater Sludge: Isolation, Molecular Identification, EPS Characterization and Performance for Sludge Settling and Dewatering. Water Research, 44, 2253-2266.
https://doi.org/10.1016/j.watres.2009.12.046
[66]  Shi, Y.H., Huang, J.H., Zeng, G.M., et al. (2017) Exploiting Extracellular Polymeric Substances (EPS) Controlling Strategies for Performance Enhancement of Biological Wastewater Treatments: An Overview. Chemosphere: Environmental Toxicology and Risk Assessment, 180, 396-411.
https://doi.org/10.1016/j.chemosphere.2017.04.042
[67]  Chen, J., Zhang, M., Li, F., et al. (2016) Membrane Fouling in a Membrane Bioreactor: High Filtration Resistance of Gel Layer and Its Underlying Mechanism. Water Research, 102, 82-89.
https://doi.org/10.1016/j.watres.2016.06.028
[68]  Kodera, T., Akizuki, S. and Toda, T. (2017) Formation of Simultaneous Denitrification and Methanogenesis Granules in Biological Wastewater Treatment. Process Biochemistry, 58, 252-257.
https://doi.org/10.1016/j.procbio.2017.04.038
[69]  Xu, H., Liu, Y.B., Gao, Y.Y., et al. (2018) Granulation Process in an Expanded Granular Sludge Blanket (EGSB) Reactor for Domestic Sewage Treatment: Impact of Extracellular Polymeric Substances Compositions and Evolution of Microbial Population. Bioresource Technology, 269, 153-161.
https://doi.org/10.1016/j.biortech.2018.08.100
[70]  孙寓姣, 左剑恶, 陈莉莉. 同时产甲烷反硝化颗粒污泥中微生物群落结构[J]. 中国环境科学, 2007, 27(1): 44-48.
[71]  Yi, X.H., Wan, J.Q., Ma, Y.W. and Wang, Y. (2016) Characteristics and Dominant Microbial Community Structure of Granular Sludge under the Simultaneous Denitrification and Methanogenesis Process. Biochemical Engineering Journal, 107, 66-74.
https://doi.org/10.1016/j.bej.2015.12.003
[72]  Goux, X., Calusinska, M., Fossépré, M., Benizri, E. and Delfosse, P. (2016) Start-Up Phase of an Anaerobic Full-Scale Farm Reactor—Appearance of Mesophilic Anaerobic Conditions and Establishment of the Methanogenic Microbial Community. Bioresource Technology, 212, 217-226.
https://doi.org/10.1016/j.biortech.2016.04.040
[73]  谢丽, 陈金荣, 周琪. 厌氧同时反硝化产甲烷研究进展[J]. 化工学报, 2011, 62(3): 589-597.
[74]  Wong, B.T. and Lee, D.J. (2011) Denitri-fying Sulfide Removal and Carbon Methanogenesis in a Mesophilic Methanogenic Culture. Bioresource Technology, 102, 6673-6679.
https://doi.org/10.1016/j.biortech.2011.03.097
[75]  Liao, R.H., Shen, K., Li, A.M., et al. (2013) High-Nitrate Wastewater Treatment in an Expanded Granular Sludge Bed Reactor and Microbial Diversity Using 454 Pyrosequencing Analysis. Bioresource Technology, 134, 190-197.
https://doi.org/10.1016/j.biortech.2012.12.057

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133