全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

June to October Aerosol Optical Depth over the Arctic at Various Spatial and Temporal Scales in MODIS, MAIAC, CALIOP and GOES Data

DOI: 10.4236/ojap.2023.121001, PP. 1-29

Keywords: Inter-Comparison of MAIAC CALIOP MODIS C6.1 GOES AOD-Products, Long-Term Evaluation of AOD-Products with AERONET Observations, AOD Distribution over the Arctic, Changes in Arctic AOD

Full-Text   Cite this paper   Add to My Lib

Abstract:

The accuracy of the cloud-aerosol lidar with orthogonal polarization (CALIOP), moderate resolution imaging spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC), and Geostationary Operational Environmental Satellite (GOES) aerosol optical depth (AOD) products for the Arctic north of 59.75°N was examined by means of 35 aerosol robotic network (AERONET) AOD sites. The assessment for June to October 2006 to 2020 showed MAIAC AOD agreed the best with AERONET AOD; CALIOP AOD differed the strongest from the AERONET AOD. Cross-correlations of CALIOP AOD along the satellite path indicated that AOD-values 40 km up-and-down the path often failed to represent the AERONET AOD-values within ±30 min of the overpass in this region dominated by easterly winds. Typically, CALIOP AOD was lower than AERONET AOD and MAIAC AOD at the sites, especially, at sites with mean AOD below 0.1. Generally, MODIS AOD values exceeded those of MAIAC. Comparison of CALIOP, MAIAC, and MODIS products resampled on a 0.25° × 0.25° grid revealed differences among the products caused by their temporal and spatial resolution, sample habit and size. Typically, the MODIS AOD-product showed the most details in AOD distribution. Despite differences in AOD-values, all products provided similar temporal evolution of elevated and lower AOD.

References

[1]  Winker, D.M., Vaughan, M.A., Omar, A., Hu, Y., Powell, K.A., Liu, Z., Hunt, W.H. and Young, S.A. (2009) Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. Journal of Atmospheric and Oceanic Technology, 26, 2310-2323.
https://doi.org/10.1175/2009JTECHA1281.1
[2]  NASA MODIS Adaptive Processing System, Goddard Space Flight Center (2017) MODIS Atmosphere L2 Aerosol Product.
[3]  Lyapustin, A., Wang, Y., Korkin, S. and Huang, D. (2018) MODIS Collection 6 MAIAC Algorithm. Atmospheric Measurement Techniques, 11, 5741-5765.
https://doi.org/10.5194/amt-11-5741-2018
[4]  Liu, B., Ma, Y., Gong, W., Zhang, M., Wang, W. and Shi, Y. (2018) Comparison of AOD from CALIPSO, MODIS, and Sun Photometer under Different Conditions over Central China. Scientific Reports, 8, Article No. 10066.
https://doi.org/10.1038/s41598-018-28417-7
[5]  Wei, X., Chang, N.-B., Bai, K. and Gao, W. (2020) Satellite Remote Sensing of Aerosol Optical Depth: Advances, Challenges, and Perspectives. Critical Reviews in Environmental Science and Technology, 50, 1640-1725.
https://doi.org/10.1080/10643389.2019.1665944
[6]  Liu, C., Shen, X. and Gao, W. (2018) Intercomparison of CALIOP, MODIS, and AERONET Aerosol Optical Depth over China During the Past Decade. International Journal of Remote Sensing, 39, 7251-7275.
https://doi.org/10.1080/01431161.2018.1466070
[7]  Kim, M.-H., Kim, S., Yoon, S.-C. and Omar, A. (2013) Comparison of Aerosol Optical Depth between CALIOP and MODIS Aqua for CALIOP Aerosol Subtypes over the Ocean. Journal of Geophysical Research: Atmospheres, 118, 13241-13252.
https://doi.org/10.1002/2013JD019527
[8]  de Oliveira, A.M., Souza, C.T., de Oliveira, N.P.M., Melo, A.K.S., Lopes, F.J.S., Landulfo, E., Elbern, H. and Hoelzemann, J.J. (2019) Analysis of Atmospheric Aerosol Optical Properties in the Northeast Brazilian Atmosphere with Remote Sensing Data from MODIS and CALIOP/CALIPSO Satellites, AERONET Photometers and a Ground-Based Lidar. Atmosphere, 10, Article No. 594.
https://www.mdpi.com/2073-4433/10/10/594
https://doi.org/10.3390/atmos10100594
[9]  Kaskaoutis, D.G., Kharol, S.K., Sinha, P.R., Singh, R.P., Badarinath, K.V.S., Mehdi, W. and Sharma, M. (2011) Contrasting Aerosol Trends over South Asia during the Last Decade Based on MODIS Observations. Atmospheric Measurement Techniques Discussions, 4, 5275-5323.
https://doi.org/10.5194/amtd-4-5275-2011
[10]  Campbell, J.R., Ge, C., Wang, J., Welton, E.J., Bucholtz, A., Hyer, E.J., Reid, E.A., Chew, B.N., Liew, S.-C., Salinas, S.V., Lolli, S., Kaku, K.C., Lynch, P., Mahmud, M., Mohamad, M. and Holben, B.N. (2016) Applying Advanced Ground-Based Remote Sensing in the Southeast Asian Maritime Continent to Characterize Regional Proficiencies in Smoke Transport Modeling. Journal of Applied Meteorology and Climatology, 55, 3-22.
https://doi.org/10.1175/JAMC-D-15-0083.1
[11]  Bright, J.M. and Gueymard, C.A. (2019) Climate-Specific and Global Validation of MODIS Aqua and Terra Aerosol Optical Depth at 452 AERONET Stations. Solar Energy, 183, 594-605.
https://doi.org/10.1016/j.solener.2019.03.043
[12]  Mölders, N. and Friberg, M. (2020) Using MAN and Coastal AERONET Measurements to Assess the Suitability of MODIS C6.1 Aerosol Optical Depth for Monitoring Changes from Increased Arctic Shipping. Open Journal of Air Pollution, 9, 77-104.
https://doi.org/10.4236/ojap.2020.94006
[13]  Remer, L.A., Mattoo, S., Levy, R.C. and Munchak, L.A. (2013) MODIS 3 Km Aerosol Product: Algorithm and Global Perspective. Atmospheric Measurement Techniques, 6, 1829-1844.
https://doi.org/10.5194/amt-6-1829-2013
[14]  Martins, V.S., Lyapustin, A., de Carvalho, L.A.S., Barbosa, C.C.F. and Novo, E.M.L.M. (2017) Validation of High-Resolution MAIAC Aerosol Product over South America: MAIAC/AERONET Aerosols in South America. Journal of Geophysical Research: Atmospheres, 122, 7537-7559.
https://doi.org/10.1002/2016JD026301
[15]  Jethva, H., Torres, O. and Yoshida, Y. (2019) Accuracy Assessment of MODIS Land Aerosol Optical Thickness Algorithms Using AERONET Measurements over North America. Atmospheric Measurement Techniques, 12, 4291-4307.
https://doi.org/10.5194/amt-12-4291-2019
[16]  Chernokulsky, A. and Mokhov, I.I. (2012) Climatology of Total Cloudiness in the Arctic: An Intercomparison of Observations and Reanalyses. Advances in Meteorology, 2012, Article ID: 542093.
https://doi.org/10.1155/2012/542093
[17]  Winker, D.M., Tackett, J.L., Getzewich, B.J., Liu, Z., Vaughan, M.A. and Rogers, R.R. (2013) The Global 3-D Distribution of Tropospheric Aerosols as Characterized by CALIOP. Atmospheric Measurement Techniques, 13, 3345-3361.
https://doi.org/10.5194/acp-13-3345-2013
[18]  Zhang, Z., Zhang, M., Bilal, M., Su, B., Zhang, C. and Guo, L. (2020) Comparison of MODIS- and CALIPSO-Derived Temporal Aerosol Optical Depth over Yellow River Basin (China) from 2007 to 2015. Earth Systems and Environment, 4, 535-550.
https://doi.org/10.1007/s41748-020-00181-7
[19]  Schutgens, N., Sayer, A.M., Heckel, A., Hsu, C., Jethva, H., de Leeuw, G., Leonard, P.J.T., Levy, R.C., Lipponen, A., Lyapustin, A., North, P., Popp, T., Poulsen, C., Sawyer, V., Sogacheva, L., Thomas, G., Torres, O., Wang, Y., Kinne, S., Schulz, M. and Stier, P. (2020) An Aerocom-Aerosat Study: Intercomparison of Satellite AOD Datasets for Aerosol Model Evaluation. Atmospheric Chemistry and Physics, 20, 12431-12457.
https://doi.org/10.5194/acp-20-12431-2020
[20]  Taylor, G.I. (1938) The Spectrum of Turbulence. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 164, 476-490.
https://doi.org/10.1098/rspa.1938.0032
[21]  Omar, A.H., Winker, D.M., Tackett, J.L., Giles, D.M., Kar, J., Liu, Z., Vaughan, M.A., Powell, K.A. and Trepte, C.R. (2013) CALIOP and AERONET Aerosol Optical Depth Comparisons: One Size Fits None. Journal of Geophysical Research: Atmospheres, 118, 4748-4766.
https://doi.org/10.1002/jgrd.50330
[22]  Sayer, A.M., Munchak, L.A., Hsu, N.C., Levy, R.C., Bettenhausen, C. and Jeong, M.-J. (2014) MODIS Collection 6 Aerosol Products: Comparison between Aqua’s E-Deep Blue, Dark Target, and “Merged” Data Sets, and Usage Recommendations. Journal of Geophysical Research: Atmospheres, 119, 13,965-913,989.
https://doi.org/10.1002/2014JD022453
[23]  Sayer, A.M., Hsu, N.C., Bettenhausen, C., Jeong, M.-J. and Meister, G. (2015) Effect of MODIS Terra Radiometric Calibration Improvements on Collection 6 Deep Blue Aerosol Products: Validation and Terra/Aqua Consistency. Journal of Geophysical Research: Atmospheres, 120, 12,157-12,174.
https://doi.org/10.1002/2015JD023878
[24]  Ichoku, C., Chu, D.A., Mattoo, S., Kaufman, Y.J., Remer, L.A., Tanré, D., Slutsker, I. and Holben, B.N. (2002) A Spatio-Temporal Approach for Global Validation and Analysis of MODIS Aerosol Products. Geophysical Research Letters, 29, MOD1-1-MOD1-4.
https://doi.org/10.1029/2001GL013206
[25]  Superczynski, S.D., Kondragunta, S. and Lyapustin, A.I. (2017) Evaluation of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Algorithm through Intercomparison with VIIRS Aerosol Products and AERONET. Journal of Geophysical Research: Atmospheres, 122, 3005-3022.
https://doi.org/10.1002/2016JD025720
[26]  Hunt, W.H., Winker, D.M., Vaughan, M.A., Powell, K.A., Lucker, P.L. and Weimer, C. (2009) CALIPSO Lidar Description and Performance Assessment. Journal of Atmospheric and Oceanic Technology, 26, 1214-1228.
https://doi.org/10.1175/2009JTECHA1223.1
[27]  Hu, Y.M., Vaughan, M., Liu, Z., Lin, B., Yang, P., Flittner, D., Hunt, B., Kuehn, R., Huang, J., Wu, D., Rodier, S., Powell, K., Trepte, C. and Winker, D. (2007) The Depolarization-Attenuated Backscatter Relation: CALIPSO Lidar Measurements vs. Theory. Optics Express, 15, 5327-5332.
https://doi.org/10.1364/OE.15.005327
[28]  Kim, M.H., Omar, A.H., Tackett, J.L., Vaughan, M.A., Winker, D.M., Trepte, C.R., Hu, Y., Liu, Z., Poole, L.R., Pitts, M.C., Kar, J. and Magill, B.E. (2018) The CALIPSO Version 4 Automated Aerosol Classification and Lidar Ratio Selection Algorithm. Atmospheric Measurement Techniques, 11, 6107-6135.
https://doi.org/10.5194/amt-11-6107-2018
[29]  NASA (National Aeronautics and Space Administration) (2022) CALIPSO Data User’s Guide.
http://www-calipso.larc.nasa.gov/resources/calipso_users_guide/
[30]  Schmit, T.J., Gunshor, M.M., Menzel, W.P., Gurka, J.J., Li, J. and Bachmeier, A.S. (2005) Introducing the Next-Generation Advanced Baseline Imager on GOES-R. Bulletin of the American Meteorological Society, 86, 1079-1096.
https://doi.org/10.1175/BAMS-86-8-1079
[31]  Schmit, T.J.G., P., Gunshor, M.M., Daniels, J., Goodman, S.J. and Lebair, W.J. (2017) A Closer Look at the ABI on the GOES-R Series. Bulletin of the American Meteorological Society, 98, 681-698.
https://doi.org/10.1175/BAMS-D-15-00230.1
[32]  Harris-Corporation (2019) GOES-R Series Product Definition and User’s Guide (PUG).
https://www.goes-r.gov/products/docs/PUG-L2+-vol5.pdf
[33]  Laszlo, I. and Daniels, J. (2021) GOES-17 ABI L2 + Aerosol Optical Depth (AOD) Release Provisional Data Quality.
https://www.star.nesdis.noaa.gov/atmospheric-composition-training/documents/GOES-17_ABI_L2_AOD_Provisional_ReadMe_v3.pdf
[34]  Aerosol Product Application Team of the AWG Aerosols/Air Quality/Atmospheric Chemistry Team (2012) GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Suspended Matter/Aerosol Optical Depth and Aerosol Size Parameter.
https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/AOD.pdf
[35]  Holben, B.N., Tanré, D., Smirnov, A., Eck, T.F., Slutsker, I., Abuhassan, N., Newcomb, W.W., Schafer, J.S., Chatenet, B., Lavenu, F., Kaufman, Y.J., Castle, J.V., Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O’Neill, N.T., Pietras, C., Pinker, R.T., Voss, K. and Zibordi, G. (2001) An Emerging Ground-Based Aerosol Climatology: Aerosol Optical Depth from AERONET. Journal of Geophysical Research: Atmospheres, 106, 12067-12097.
https://doi.org/10.1029/2001JD900014
[36]  Kaskaoutis, D.G., Kalapureddy, M.C.R., Krishna Moorthy, K., Devara, P.C.S., Nastos, P.T., Kosmopoulos, P.G. and Kambezidis, H.D. (2010) Heterogeneity in Pre-Monsoon Aerosol Types over the Arabian Sea Deduced from Ship-Borne Measurements of Spectral AODs. Atmospheric Chemistry and Physics, 10, 4893-4908.
https://doi.org/10.5194/acp-10-4893-2010
[37]  Kharol, S.K., Badarinath, K.V.S., Kaskaoutis, D.G., Sharma, A.R. and Gharai, B. (2011) Influence of Continental Advection on Aerosol Characteristics over Bay of Bengal (BoB) in Winter: Results from W-ICARB Cruise Experiment. Annales Geophysics, 29, 1423–1438.
https://doi.org/10.5194/angeo-29-1423-2011
[38]  de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W.H., Descloitres, J., Grainger, R.G., Griesfeller, J., Heckel, A., Kinne, S., Klüser, L., Kolmonen, P., Litvinov, P., Martynenko, D., North, P., Ovigneur, B., Pascal, N., Poulsen, C., Ramon, D., Schulz, M., Siddans, R., Sogacheva, L., Tanré, D., Thomas, G.E., Virtanen, T.H., von Hoyningen Huene, W., Vountas, M. and Pinnock, S. (2015) Evaluation of Seven European Aerosol Optical Depth Retrieval Algorithms for Climate Analysis. Remote Sensing of Environment, 162, 295-315.
https://doi.org/10.1016/j.rse.2013.04.023
[39]  EPA (2007) Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze. United States Environmental Protection Agency, Washington DC, 262 p.
[40]  von Storch, H. and Zwiers, F.W. (1999) Statistical Analysis in Climate Research, Cambridge University Press, Cambridge, 495 p.
[41]  Randerson, J.T., van der Werf, G.R., Giglio, L., Collatz, G.J. and Kasibhatla, P.S. (2018) Global Fire Emissions Database, Version 4.1 (GFEDv4). ORNL DAAC, Oak Ridge.
[42]  Mölders, N. and Kramm, G. (2014) Lectures in Meteorology. Springer, Cham, 591 p.
https://doi.org/10.1007/978-3-319-02144-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133