全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of Biosynthesized Metallic and Metal Oxide Nanoparticles in Combating Anti-Microbial Drug Resilient Pathogens

DOI: 10.4236/jbnb.2023.141001, PP. 1-22

Keywords: Nanoparticle, Drug Resistance, Metal Oxide, Metals, Pathogens

Full-Text   Cite this paper   Add to My Lib

Abstract:

Because of their high efficiency, antibiotics have long been the primary treatment for infections, but the rise of drug-resistant pathogens has become a therapeutic concern. Nanoparticles, as novel biomaterials, are currently gaining global attention to combat them. Drug-resistant diseases may need the use of nanoparticles as a viable therapeutic option. By altering target locations and enzymes, decreasing cell permeability, inactivating enzymes, and increasing efflux by overexpressing efflux pumps, they can bypass conventional resistance mechanisms. Therefore, understanding how metal and metal oxide nanoparticles affect microorganisms that are resistant to antimicrobial drugs is the main objective of this review. Accordingly, the uses of metal and metal oxide nanoparticles in the fight against drug-resistant diseases appear promising. However, their mechanism of action, dose, and possible long-term effects require special attention and future research. Furthermore, repeated use of silver nanoparticles may cause gram-negative microorganisms to acquire resistance, necessitating additional study.

References

[1]  Balderrama-González, A.S., Piñón-Castillo, H.A., Ramírez-Valdespino, C.A., Landeros-Martínez, L.L., Orrantia-Borunda, E. and Esparza-Ponce, H.E. (2021) Antimicrobial Resistance and Inorganic Nanoparticles. International Journal of Molecular Sciences, 22, Article 12890.
https://doi.org/10.3390/ijms222312890
[2]  Shaikh, S., Nazam, N., Rizvi, S.M.D., Ahmad, K., Baig, M.H., Lee, E.J. and Choi.I. (2019) Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. International Journal of Molecular Sciences, 20, Article 2468.
https://doi.org/10.3390/ijms20102468
[3]  Lee, N.Y., Ko, W.C. and Hsueh, P.R. (2019) Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms. Frontiers in Pharmacology, 10, Article 1153.
https://doi.org/10.3389/fphar.2019.01153
[4]  Altun, E., Aydogdu, M.O., Chung, E., Ren, G., Homer-Vanniasinkam, S. and Edirisinghe, M. (2021) Metal-Based Nanoparticles for Combating Antibiotic Resistance. Applied Physics Reviews, 8, Article 041303.
https://doi.org/10.1063/5.0060299
[5]  Abo-Shama, U.H., El-Gendy, H., Mousa, W.S., Hamouda, R.A., Yousuf, W.E., Hetta, H.F. and Abdeen, E.E. (2020) Synergistic and Antagonistic Effects of Metal Nanoparticles in Combination with Antibiotics against Some Reference Strains of Pathogenic Microorganisms. Infection and Drug Resistance, 13, 351-362.
https://doi.org/10.2147/IDR.S234425
[6]  Gold, K., Slay, B., Knackstedt, M. and Gaharwar, A.K. (2018) Antimicrobial Activity of Metal and Metal-Oxide Based Nanoparticles. Advanced Therapeutics, 1, Article 1700033.
https://doi.org/10.1002/adtp.201700033
[7]  Mba, I.E. and Nweze, E.I. (2021) Nanoparticles as Therapeutic Options for Treating Multidrug-Resistant Bacteria: Research Progress, Challenges, and Prospects. World Journal of Microbiology and Biotechnology, 37, Article No. 108.
https://doi.org/10.1007/s11274-021-03070-x
[8]  Noori, A.J. and Kareem, F.A. (2019) The Effect of Magnesium Oxide Nanoparticles on the Antibacterial and Antibiofilm Properties of Glass-Ionomer Cement. Heliyon, 5, e02568.
https://doi.org/10.1016/j.heliyon.2019.e02568
[9]  LewisOscar, F., Vismaya, S., Arunkumar, M., Thajuddin, N., Dhanasekaran, D. and Nithya, C. (2016) Algal Nanoparticles: Synthesis and Biotechnological Potentials. In: Thajuddin, N. and Dhanasekaran, D., Eds., Algae: Organisms for Imminent Biotechnology, IntechOpen, London, 157-182.
https://doi.org/10.5772/62909
[10]  Das, R.K., Pachapur, V.L., Lonappan, L., Naghdi, M., Pulicharla, R., Maiti, S., et al. (2017) Biological Synthesis of Metallic Nanoparticles: Plants, Animals and Microbial Aspects. Nanotechnology for Environmental Engineering, 2, Article No. 18.
https://doi.org/10.1007/s41204-017-0029-4
[11]  Baptista, P.V., McCusker, M.P., Carvalho, A., Ferreira, D.A., Mohan, N.M., Martins, M. and Fernandes, A.R. (2018) Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”. Frontiers in microbiology, 9, Article 1441.
https://doi.org/10.3389/fmicb.2018.01441
[12]  Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H., et al. (2018) Antibiotic Resistance: A Rundown of a Global Crisis. Infection and Drug Resistance, 11, 1645-1658.
https://doi.org/10.2147/IDR.S173867
[13]  Pandey, P. and Dahiya, M. (2016) A Brief Review on Inorganic Nanoparticles. Journal of Critical Review, 3, 18-26.
https://doi.org/10.1016/j.wneu.2015.10.007
[14]  Hikal, W.M., Bratovcic, A., Baeshen, R.S., Tkachenko, K.G. and Said-Al Ahl, H.A. (2021) Nanobiotechnology for the Detection and Control of Waterborne Parasites. Open Journal of Ecology, 11, 203-223.
https://doi.org/10.4236/oje.2021.113016
[15]  Dash, K.K., Deka, P., Bangar, S.P., Chaudhary, V., Trif, M. and Rusu, A. (2022) Applications of Inorganic Nanoparticles in Food Packaging: A Comprehensive Review. Polymers, 14, Article 521.
https://doi.org/10.3390/polym14030521
[16]  Shang, L., Nienhaus, K. and Nienhaus, G.U. (2014) Engineered Nanoparticles Interacting with Cells: Size Matters. Journal of Nanobiotechnology, 12, Article No. 5.
https://doi.org/10.1186/1477-3155-12-5
[17]  Möhler, J.S., Sim, W., Blaskovich, M.A., Cooper, M.A. and Ziora, Z.M. (2018) Silver Bullets: A New Lusters on an Old Antimicrobial Agent. Biotechnology Advances, 36, 1391-1411.
https://doi.org/10.1016/j.biotechadv.2018.05.004
[18]  Vance, M.E., Kuiken, T., Vejerano, E.P., McGinnis, S.P., Hochella Jr., M.F., Rejeski, D. and Hull, M.S. (2015) Nanotechnology in the Real World: Redeveloping the Nanomaterial Consumer Products Inventory. Beilstein Journal of Nanotechnology, 6, 1769-1780.
https://doi.org/10.3762/bjnano.6.181
[19]  Brown, A.N., Smith, K., Samuels, T.A., Lu, J., Obare, S.O. and Scott, M.E. (2012) Nanoparticles Functionalized with Ampicillin Destroy Multiple-Antibiotic-Resistant Isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and Methicillin-Resistant Staphylococcus aureus. Applied and Environmental Microbiology, 78, 2768-2774.
https://doi.org/10.1128/AEM.06513-11
[20]  Salleh, A., Naomi, R., Utami, N.D., Mohammad, A.W., Mahmoudi, E., Mustafa, N. and Fauzi, M.B. (2020) The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials, 10, Article 1566.
https://doi.org/10.3390/nano10081566
[21]  Yin, I.X., Zhang, J., Zhao, I.S., Mei, M.L., Li, Q. and Chu, C.H. (2020) The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. International Journal of Nanomedicine, 15, 2555-2562.
https://doi.org/10.2147/IJN.S246764
[22]  Liao, C., Li, Y. and Tjong, S.C. (2019) Bactericidal and Cytotoxic Properties of Silver Nanoparticles. International Journal of Molecular Sciences, 20, Article 449.
https://doi.org/10.3390/ijms20020449
[23]  Panáček, A., Kvítek, L., Smékalová, M., Večeřová, R., Kolář, M., Röderová, M., et al. (2018) Bacterial Resistance to Silver Nanoparticles and How to Overcome It. Nature Nanotechnology, 13, 65-71.
https://doi.org/10.1038/s41565-017-0013-y
[24]  Gifford, J.C., Bresee, J., Carter, C.J., Wang, G., Melander, R.J., Melander, C. and Feldheim, D.L. (2014) Thiol-Modified Gold Nanoparticles for the Inhibition of Mycobacterium smegmatis. Chemical Communications, 50, 15860-15863.
https://doi.org/10.1039/C4CC06236A
[25]  Irvine, D.J. and Dane, E.L. (2020) Enhancing Cancer Immunotherapy with Nanomedicine. Nature Reviews Immunology, 20, 321-334.
https://doi.org/10.1038/s41577-019-0269-6
[26]  Zhang, J., Mou, L. and Jiang, X. (2020) Surface Chemistry of Gold Nanoparticles for Health-Related Applications. Chemical Science, 11, 923-936.
https://doi.org/10.1039/C9SC06497D
[27]  Sharma, V., Basak, S. and Ali, S.W. (2022) Synthesis of Copper Nanoparticles on Cellulosic Fabrics and Evaluation of Their Multifunctional Performances. Cellulose, 29, 7973-7988.
https://doi.org/10.1007/s10570-022-04709-0
[28]  Katwal, R., Kaur, H., Sharma, G., Naushad, M. and Pathania, D. (2015) Electrochemical Synthesized Copper Oxide Nanoparticles for Enhanced Photocatalytic and Antimicrobial Activity. Journal of Industrial and Engineering Chemistry, 31, 173-184.
https://doi.org/10.1016/j.jiec.2015.06.021
[29]  Abd Elkodous, M., El-Sayyad, G.S., Abdelrahman, I.Y., El-Bastawisy, H.S., Mosallam, F.M., Nasser, H.A., et al. (2019) Therapeutic and Diagnostic Potential of Nanomaterials for Enhanced Biomedical Applications. Colloids and Surfaces B: Biointerfaces, 180, 411-428.
https://doi.org/10.1016/j.colsurfb.2019.05.008
[30]  Li, L., Zhai, T., Bando, Y. and Golberg, D. (2012) Recent Progress of One-Dimensional ZnO Nanostructured Solar Cells. Nano Energy, 1, 91-106.
https://doi.org/10.1016/j.nanoen.2011.10.005
[31]  Vega-Jiménez, A.L., Vázquez-Olmos, A.R., Acosta-Gío, E. and álvarez-Pérez, M.A. (2019) In Vitro Antimicrobial Activity Evaluation of Metal Oxide Nanoparticles. In: Koh, K.S. and Wong, V.L., Eds., Nanoemulsions: Properties, Fabrications and Applications, IntechOpen, London, UK.
https://doi.org/10.5772/intechopen.84369
[32]  Siddiqi, K.S., ur Rahman, A. and Husen, A. (2018) Properties of Zinc Oxide Nanoparticles and Their Activity against Microbes. Nanoscale Research Letters, 13, Article No. 141.
https://doi.org/10.1186/s11671-018-2532-3
[33]  Zhang, Y., Nayak, T.R., Hong, H. and Cai, W. (2013) Biomedical Applications of Zinc Oxide Nanomaterials. Current Molecular Medicine, 13, 1633-1645.
https://doi.org/10.2174/1566524013666131111130058
[34]  Vatsha, B., Tetyana, P., Shumbula, P.M., Ngila, J.C., Sikhwivhilu, L.M. and Moutloali, R.M. (2013) Effects of Precipitation Temperature on Nanoparticle Surface Area and Antibacterial Behaviour of Mg(OH)2 and MgO Nanoparticles. Journal of Biomaterials and Nanobiotechnology, 4, 365-373.
https://doi.org/10.4236/jbnb.2013.44046
[35]  He, Y., Ingudam, S., Reed, S., Gehring, A., Strobaugh, T.P. and Irwin, P. (2016) Study on the Mechanism of Antibacterial Action of Magnesium Oxide Nanoparticles against Foodborne Pathogens. Journal of Nanobiotechnology, 14, Article No. 54.
https://doi.org/10.1186/s12951-016-0202-0
[36]  Endo-Kimura, M., Janczarek, M., Bielan, Z., Zhang, D., Wang, K., Markowska-Szczupak, A. and Kowalska, E. (2019) Photocatalytic and Antimicrobial Properties of Ag2O/TiO2 Heterojunction. ChemEngineering, 3, Article 3.
https://doi.org/10.3390/chemengineering3010003
[37]  Nafari, A., Cheraghipour, K., Sepahvand, M., Shahrokhi, G., Gabal, E. and Mahmoudvand, H. (2020) Nanoparticles: New Agents toward Treatment of Leishmaniasis. Parasite Epidemiology and Control, 10, e00156.
https://doi.org/10.1016/j.parepi.2020.e00156
[38]  Azizi-Lalabadi, M., Ehsani, A., Divband, B. and Alizadeh-Sani, M. (2019) Antimicrobial Activity of Titanium Dioxide and Zinc Oxide Nanoparticles Supported in 4A Zeolite and Evaluation the Morphological Characteristic. Scientific Reports, 9, Article No. 17439.
https://doi.org/10.1038/s41598-019-54025-0
[39]  Fu, P.P., Xia, Q., Hwang, H.M., Ray, P.C. and Yu, H. (2014) Mechanisms of Nanotoxicity: Generation of Reactive Oxygen Species. Journal of Food and Drug Analysis, 22, 64-75.
https://doi.org/10.1016/j.jfda.2014.01.005
[40]  Walusansa, A., Asiimwe, S., Nakavuma, J., Ssenku, J., Katuura, E., Kafeero, H., et al. (2022) Antibiotic-Resistance in Medically Important Bacteria Isolated from Commercial Herbal Medicines in Africa from 2000 to 2021: A Systematic Review and Meta-Analysis. Antimicrobial Resistance & Infection Control, 11, Article No. 11.
https://doi.org/10.1186/s13756-022-01054-6
[41]  Gigante, V., Sati, H. and Beyer, P. (2022) Recent Advances and Challenges in Antibacterial Drug Development. ADMET and DMPK, 10, 147-151.
https://doi.org/10.5599/admet.1271
[42]  Bhutta, Z.A., Sommerfeld, J., Lassi, Z.S., Salam, R.A. and Das, J.K. (2014) Global Burden, Distribution, and Interventions for Infectious Diseases of Poverty. Infectious Diseases of Poverty, 3, Article No. 21.
https://doi.org/10.1186/2049-9957-3-21
[43]  Okeke, I.N., Laxminarayan, R., Bhutta, Z.A., Duse, A.G., Jenkins, P., O’Brien, T.F., et al. (2005) Antimicrobial Resistance in Developing Countries. Part I: Recent Trends and Current Status. The Lancet Infectious Diseases, 5, 481-493.
https://doi.org/10.1016/S1473-3099(05)70189-4
[44]  Schwaber, M.J. and Carmeli, Y. (2007) Mortality and Delay in Effective Therapy Associated with Extended-Spectrum β-Lactamase Production in Enterobacteriaceae bacteraemia: A Systematic Review and Meta-Analysis. Journal of Antimicrobial Chemotherapy, 60, 913-920.
https://doi.org/10.1093/jac/dkm318
[45]  Lambert, M.L., Suetens, C., Savey, A., Palomar, M., Hiesmayr, M., Morales, I., et al. (2011) Clinical Outcomes of Health-Care-Associated Infections and Antimicrobial Resistance in Patients Admitted to European Intensive-Care Units: A Cohort Study. The Lancet Infectious Diseases, 11, 30-38.
https://doi.org/10.1016/S1473-3099(10)70258-9
[46]  Murray, C.J., Ikuta, K.S., Sharara, F., Swetschinski, L., Aguilar, G.R., Gray, A., et al. (2022) Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. The Lancet, 399, 629-655.
https://doi.org/10.1016/S0140-6736(21)02724-0
[47]  Oliver, A., Xue, Z., Villanueva, Y.T., Durbin-Johnson, B., Alkan, Z., Taft, D.H., et al. (2022) Association of Diet and Antimicrobial Resistance in Healthy US Adults. Current Developments in Nutrition, 6, 1023.
https://doi.org/10.1093/cdn/nzac069.028
[48]  Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M.H. and Adibkia, K. (2014) Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Materials Science and Engineering: C, 44, 278-284.
https://doi.org/10.1016/j.msec.2014.08.031
[49]  Huh, A.J. and Kwon, Y.J. (2011) “Nanoantibiotics”: A New Paradigm for Treating Infectious Diseases Using Nanomaterials in the Antibiotic Resistant Era. Journal of Controlled Release, 156, 128-145.
https://doi.org/10.1016/j.jconrel.2011.07.002
[50]  Gholipourmalekabadi, M., Mobaraki, M., Ghaffari, M., Zarebkohan, A., Omrani, V.F., Urbanska, A.M. and Seifalian, A. (2017) Targeted Drug Delivery Based on Gold Nanoparticle Derivatives. Current Pharmaceutical Design, 23, 2918-2929.
https://doi.org/10.2174/1381612823666170419105413
[51]  Wang, Z., Dong, K., Liu, Z., Zhang, Y., Chen, Z., Sun, H., et al. (2017) Activation of Biologically Relevant Levels of Reactive Oxygen Species by Au/g-C3N4 Hybrid Nanozyme for Bacteria Killing and Wound Disinfection. Biomaterials, 113, 145-157.
https://doi.org/10.1016/j.biomaterials.2016.10.041
[52]  Hemeg, H.A. (2017) Nanomaterials for Alternative Antibacterial Therapy. International Journal of Nanomedicine, 12, 8211-8225.
https://doi.org/10.2147/IJN.S132163
[53]  Slavin, Y.N., Asnis, J., Häfeli, U.O. and Bach, H. (2017) Metal Nanoparticles: Understanding the Mechanisms behind Antibacterial Activity. Journal of Nanobiotechnology, 15, Article No. 65.
https://doi.org/10.1186/s12951-017-0308-z
[54]  Burdușel, A.C., Gherasim, O., Grumezescu, A.M., Mogoantă, L., Ficai, A. and Andronescu, E. (2018) Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials, 8, Article 681.
https://doi.org/10.3390/nano8090681
[55]  Lee, N.Y., Ko, W.C. and Hsueh, P.R. (2019) Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms. Frontiers in Pharmacology, 10, Article 1153.
https://doi.org/10.3389/fphar.2019.01153
[56]  Youngs, W.J., Knapp, A.R., Wagers, P.O. and Tessier, C.A. (2012) Nanoparticle Encapsulated Silver Carbene Complexes and Their Antimicrobial and Anticancer Properties: A Perspective. Dalton Transactions, 41, 327-336.
https://doi.org/10.1039/C1DT11100K
[57]  Gouyau, J., Duval, R.E., Boudier, A. and Lamouroux, E. (2021) Investigation of Nanoparticle Metallic Core Antibacterial Activity: Gold and Silver Nanoparticles against Escherichia coli and Staphylococcus aureus. International Journal of Molecular Sciences, 22, Article 1905.
https://doi.org/10.3390/ijms22041905
[58]  Burduniuc, O., Bostanaru, A.C., Mares, M., Biliuta, G. and Coseri, S. (2021) Synthesis, Characterization, and Antifungal Activity of Silver Nanoparticles Embedded in Pullulan Matrices. Materials, 14, Article 7041.
https://doi.org/10.3390/ma14227041
[59]  Mussin, J.E., Roldán, M.V., Rojas, F., Sosa, M.D.L.á., Pellegri, N. and Giusiano, G. (2019) Antifungal Activity of Silver Nanoparticles in Combination with Ketoconazole against Malassezia furfur. AMB Express, 9, Article No. 131.
https://doi.org/10.1186/s13568-019-0857-7
[60]  Jeremiah, S.S., Miyakawa, K., Morita, T., Yamaoka, Y. and Ryo, A. (2020) Potent Antiviral Effect of Silver Nanoparticles On SARS-CoV-2. Biochemical and Biophysical Research Communications, 533, 195-200.
https://doi.org/10.1016/j.bbrc.2020.09.018
[61]  Nguyen, N.Y.T., Grelling, N., Wetteland, C.L., Rosario, R. and Liu, H. (2018) Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (nMgO) against Pathogenic Bacteria, Yeasts, and Biofilms. Scientific Reports, 8, Article No. 16260.
https://doi.org/10.1038/s41598-018-34567-5
[62]  Noori, M.T., Jain, S.C., Ghangrekar, M.M. and Mukherjee, C.K. (2016) Biofouling Inhibition and Enhancing Performance of Microbial Fuel Cell Using Silver Nano-Particles as Fungicide and Cathode Catalyst. Bioresource Technology, 220, 183-189.
https://doi.org/10.1016/j.biortech.2016.08.061
[63]  Pugazhendhi, A., Prabhu, R., Muruganantham, K., Shanmuganathan, R. and Natarajan, S. (2019) Anticancer, Antimicrobial and Photocatalytic Activities of Green Synthesized Magnesium Oxide Nanoparticles (MgONPs) Using Aqueous Extract of Sargassum wightii. Journal of Photochemistry and Photobiology B: Biology, 190, 86-97.
https://doi.org/10.1016/j.jphotobiol.2018.11.014
[64]  Usman, M.S., El Zowalaty, M.E., Shameli, K., Zainuddin, N., Salama, M. and Ibrahim, N.A. (2013) Synthesis, Characterization, and Antimicrobial Properties of Copper Nanoparticles. International Journal of Nanomedicine, 8, 4467-4479.
https://doi.org/10.2147/IJN.S50837
[65]  Mahapatra, O., Bhagat, M., Gopalakrishnan, C. and Arunachalam, K.D. (2008) Ultrafine Dispersed CuO Nanoparticles and Their Antibacterial Activity. Journal of Experimental Nanoscience, 3, 185-193.
https://doi.org/10.1080/17458080802395460
[66]  Azam, A., Ahmed, A.S., Oves, M., Khan, M.S. and Memic, A. (2012) Size-Dependent Antimicrobial Properties of CuO Nanoparticles against Gram-Positive and -Negative Bacterial Strains. International Journal of Nanomedicine, 7, 3527-3535.
https://doi.org/10.2147/IJN.S29020
[67]  Murthy, H.C.A., Desalegn, T., Tan, K.B., Ghotekar, S., Waqas, M., Balachandran, R., Chan, K., Sanaulla, P.F., Kumar, M.R.A. and Ravikumar, C.R. (2021) Enhanced Multifunctionality of CuO Nanoparticles Synthesized Using Aqueous Leaf Extract of Vernonia amygdalina Plant. Results in Chemistry, 3, Article ID: 100141.
https://doi.org/10.1016/j.rechem.2021.100141
[68]  Hoseinzadeh, E., Alikhani, M.Y., Samarghandi, M.R. and Shirzad-Siboni, M. (2014) Antimicrobial Potential of Synthesized Zinc Oxide Nanoparticles against Gram Positive and Gram Negative Bacteria. Desalination and Water Treatment, 52, 4969-4976.
https://doi.org/10.1080/19443994.2013.810356
[69]  Janaki, A.C., Sailatha, E. and Gunasekaran, S. (2015) Synthesis, Characteristics and Antimicrobial Activity of ZnO Nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144, 17-22.
https://doi.org/10.1016/j.saa.2015.02.041
[70]  Demissie, M.G., Sabir, F.K., Edossa, G.D. and Gonfa, B.A. (2020) Synthesis of Zinc Oxide Nanoparticles Using Leaf Extract of Lippia adoensis (Koseret) and Evaluation of Its Antibacterial Activity. Journal of Chemistry, 2020, Article ID: 7459042.
https://doi.org/10.1155/2020/7459042
[71]  Jesline, A., John, N.P., Narayanan, P.M., Vani, C. and Murugan, S. (2015) Antimicrobial Activity of Zinc and Titanium Dioxide Nanoparticles against Biofilm-Producing Methicillin-Resistant Staphylococcus aureus. Applied Nanoscience, 5, 157-162.
https://doi.org/10.1007/s13204-014-0301-x
[72]  Carré, G., Hamon, E., Ennahar, S., Estner, M., Lett, M.C., Horvatovich, P., et al. (2014) TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia coli. Applied and Environmental Microbiology, 80, 2573-2581.
https://doi.org/10.1128/AEM.03995-13
[73]  Ansari, A., Siddiqui, V.U., Rehman, W.U., Akram, M.K., Siddiqi, W.A., Alosaimi, A.M., et al. (2022) Green Synthesis of TiO2 Nanoparticles Using Acorus calamus Leaf Extract and Evaluating Its Photocatalytic and in Vitro Antimicrobial Activity. Catalysts, 12, Article 181.
https://doi.org/10.3390/catal12020181
[74]  Sathiyaraj, S., Suriyakala, G., Gandhi, A.D., Babujanarthanam, R., Almaary, K.S., Chen, T.W. and Kaviyarasu, K. (2021) Biosynthesis, Characterization, and Antibacterial Activity of Gold Nanoparticles. Journal of Infection and Public Health, 14, 1842-1847.
https://doi.org/10.1016/j.jiph.2021.10.007
[75]  Li, X., Robinson, S.M., Gupta, A., Saha, K., Jiang, Z., Moyano, D.F., et al. (2014) Functional Gold Nanoparticles as Potent Antimicrobial Agents against Multi-Drug-Resistant Bacteria. ACS Nano, 8, 10682-10686.
https://doi.org/10.1021/nn5042625
[76]  Adeyemi, O.S., Molefe, N.I., Awakan, O.J., Nwonuma, C.O., Alejolowo, O.O., Olaolu, T., et al. (2018) Metal Nanoparticles Restrict the Growth of Protozoan Parasites. Artificial Cells, Nanomedicine, and Biotechnology, 46, S86-S94.
https://doi.org/10.1080/21691401.2018.1489267
[77]  Borgheti-Cardoso, L.N., San Anselmo, M., Lantero, E., Lancelot, A., Serrano, J.L., Hernández-Ainsa, S., et al. (2020) Promising Nanomaterials in the Fight against Malaria. Journal of Materials Chemistry B, 8, 9428-9448.
https://doi.org/10.1039/D0TB01398F
[78]  Varela-Aramburu, S., Ghosh, C., Goerdeler, F., Priegue, P., Moscovitz, O. and Seeberger, P.H. (2020) Targeting and Inhibiting Plasmodium falciparum Using Ultra-Small Gold Nanoparticles. ACS Applied Materials & Interfaces, 12, 43380-43387.
https://doi.org/10.1021/acsami.0c09075
[79]  Sazgarnia, A., Taheri, A.R., Soudmand, S., Parizi, A.J., Rajabi, O. and Darbandi, M.S. (2013) Antiparasitic Effects of Gold Nanoparticles with Microwave Radiation on Promastigotes and Amastigotes of Leishmania major. International Journal of Hyperthermia, 29, 79-86.
https://doi.org/10.3109/02656736.2012.758875
[80]  Delavari, M., Dalimi, A., Ghaffarifar, F. and Sadraei, J. (2014) In Vitro Study on Cytotoxic Effects of ZnO Nanoparticles on Promastigote and Amastigote Forms of Leishmania major (MRHO/IR/75/ER). Iranian Journal of Parasitology, 9, 6-13.
[81]  Afridi, M.S., Hashmi, S.S., Ali, G.S., Zia, M. and Abbasi, B.H. (2018) Comparative Antileishmanial Efficacy of the Biosynthesised ZnO NPs from Genus Verbena. IET Nanobiotechnology, 12, 1067-1073.
https://doi.org/10.1049/iet-nbt.2018.5076
[82]  Oliveira, H., Bednarkiewicz, A., Falk, A., Fröhlich, E., Lisjak, D., Prina-Mello, A., et al. (2019) Critical Considerations on the Clinical Translation of Upconversion Nanoparticles (UCNPs): Recommendations from the European Upconversion Network (COST Action CM1403). Advanced Healthcare Materials, 8, Article ID: 1801233.
https://doi.org/10.1002/adhm.201801233
[83]  Ivask, A., Kurvet, I., Kasemets, K., Blinova, I., Aruoja, V., Suppi, S., et al. (2014) Size-Dependent Toxicity of Silver Nanoparticles to Bacteria, Yeast, Algae, Crustaceans and Mammalian Cells in Vitro. PLOS ONE, 9, e102108.
https://doi.org/10.1371/journal.pone.0102108
[84]  Bahadar, H., Maqbool, F., Niaz, K. and Abdollahi, M. (2016) Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iranian Biomedical Journal, 20, 1-11.
[85]  Rudramurthy, G.R., Swamy, M.K., Sinniah, U.R. and Ghasemzadeh, A. (2016) Nanoparticles: Alternatives against Drug-Resistant Pathogenic Microbes. Molecules, 21, Article 836.
https://doi.org/10.3390/molecules21070836

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133