All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Distribution Analysis of S&P 500 Financial Turbulence

DOI: 10.4236/jmf.2023.131005, PP. 67-88

Keywords: Financial Turbulence, Generalised Hyperbolic Distribution, S&P 500, Goodness-of-Fit Tests

Full-Text   Cite this paper   Add to My Lib

Abstract:

In 2010 a new financial risk measure was discovered, namely Financial Turbulence. Although it has been studied by other papers, its statistical distribution study is still missing. Knowing a financial phenomenon distribution is of importance when performing risk and portfolio management, especially when estimating parametric Value-at-Risk with Copulas and performing Monte Carlo simulations. Therefore, this paper explores the S&P 500 Fi-nancial Turbulence to determine its best distribution fit by making use of various residual measures and goodness-of-fit tests. Additionally, it makes use of in-sampling and out-sampling in the period between 01/11/2012 and 01/11/2022. The results of this research indicate that the Generalised Hyperbolic distribution describes the S&P 500 Financial Turbulence the best.

References

[1]  Ang, A. and Chen, J. (2002) Asymmetric Correlations of Equity Portfolios. Journal of Financial Economics, 63, 443-494.
https://doi.org/10.1016/S0304-405X(02)00068-5
[2]  Malkiel, B.G. (1973) A Random Walk down Wall Street: The Time-Tested Strategy for Successful Investing. 11th Edition, W. W. Norton & Company, New York.
[3]  Demirer, R., Gupta, R., Lv, Z. and Wong, W.K. (2019) Equity Return Dispersion and Stock Market Volatility: Evidence from Multivariate Linear and Nonlinear Causality Tests. Sustainability, 11, 351. https://doi.org/10.3390/su11020351
[4]  Engle, R.F., Ghysels, E. and Sohn, B. (2013) Stock Market Volatility and Macroeconomic Fundamentals. Review of Economics and Statistics, 95, 776-797.
https://doi.org/10.1162/REST_a_00300
[5]  Inci, A.C., Li, H. and McCarthy, J. (2011) Financial Contagion: A Local Correlation Analysis. Research in International Business and Finance, 25, 11-25.
https://doi.org/10.1016/j.ribaf.2010.05.002
[6]  Liu, R., Demirer, R., Gupta, R. and Wohar, M. (2019) Volatility Forecasting with Bivariate Multifractal Models. Journal of Forecasting, 39, 155-167.
https://doi.org/10.1002/for.2619
[7]  Poon, S. and Clive, W.J. (2003) Forecasting Volatility in Financial Markets: A Review. Journal of Economic Literature, 41, 478-539.
https://doi.org/10.1257/jel.41.2.478
[8]  Rangel, J.G. and Engle, R.F. (2012) The Factor-Spline-GARCH Model for High and Low Frequency Correlations. Journal of Business & Economic Statistics, 30, 109-124.
https://doi.org/10.1080/07350015.2012.643132
[9]  Salisu, A.A. and Gupta, R. (2021) Oil Shocks and Stock Market Volatility of the BRICS: A GARCH-MIDAS Approach. Global Finance Journal, 48, Article ID: 100546.
https://doi.org/10.1016/j.gfj.2020.100546
[10]  Salisu, A.A. and Ogbonna, A.E. (2022) The Return Volatility of Cryptocurrencies during the COVID-19 Pandemic: Assessing the News Effect. Global Finance Journal, 54, Article ID: 100641. https://doi.org/10.1016/j.gfj.2021.100641
[11]  Kritzman, M. and Li, Y. (2010) Skulls, Financial Turbulence, and Risk Management. Financial Analysts Journal, 66, 30-41. https://doi.org/10.2469/faj.v66.n5.3
[12]  Kritzman, M., Li, Y., Page, S. and Rigobon, R. (2011) Principal Components as a Measure of Systemic Risk. The Journal of Portfolio Management, 37, 112-126.
https://doi.org/10.3905/jpm.2011.37.4.112
[13]  Salisu, A.A., Demirer, R. and Gupta, R. (2022) Financial Turbulence, Systemic Risk and the Predictability of Stock Market Volatility. Global Finance Journal, 52, Article ID: 100699. https://doi.org/10.1016/j.gfj.2022.100699
[14]  Nystrup, P., Boyd, S., Lindström, E. and Madsen, H. (2018) Multi-Period Portfolio Selection with Drawdown Control. Annals of Operations Research, 282, 245-271.
https://doi.org/10.1007/s10479-018-2947-3
[15]  Liu, X.Y., Yang, H., Gao, J. and Wang, C. (2021) FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.3955949
[16]  Chan, S., Chu, J., Nadarajah, S. and Osterrieder, J. (2017) A Statistical Analysis of Cryptocurrencies. Journal of Risk and Financial Management, 10, 12.
https://doi.org/10.3390/jrfm10020012
[17]  Egan, W.J. (2007) The Distribution of S&P 500 Index Returns. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.955639
[18]  Ignatieva, K. and Landsman, Z. (2019) Conditional Tail Risk Measures for the Skewed Generalised Hyperbolic Family. Insurance: Mathematics and Economics, 86, 98-114. https://doi.org/10.1016/j.insmatheco.2019.02.008
[19]  McNeil, A.J. (2002) The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance. Journal of the American Statistical Association, 97, 1210-1211.
https://doi.org/10.1198/jasa.2002.s242
[20]  Rydberg, T.H. (2000) Realistic Statistical Modelling of Financial Data. International Statistical Review, 68, 233-258. https://doi.org/10.1111/j.1751-5823.2000.tb00329.x
[21]  Seneta, E. (2004) Fitting the Variance-Gamma Model to Financial Data. Journal of Applied Probability, 41, 177-187. https://doi.org/10.1239/jap/1082552198
[22]  Brockett, P.L. (1983) On the Misuse of the Central Limit Theorem in Some Risk Calculations. The Journal of Risk and Insurance, 50, 727.
https://doi.org/10.2307/252712
[23]  Embrechts, P., Puccetti, G. and Rüschendorf, L. (2013) Model Uncertainty and VaR Aggregation. Journal of Banking & Finance, 37, 2750-2764.
https://doi.org/10.1016/j.jbankfin.2013.03.014
[24]  Kinnebrock, S. and Podolskij, M. (2008) A Note on the Central Limit Theorem for Bipower Variation of General Functions. Stochastic Processes and Their Applications, 118, 1056-1070. https://doi.org/10.1016/j.spa.2007.07.009
[25]  Saculinggan, M. and Balase, E.A. (2013) Empirical Power Comparison of Goodness of Fit Tests for Normality in the Presence of Outliers. Journal of Physics: Conference Series, 435, Article ID: 012041.
https://doi.org/10.1088/1742-6596/435/1/012041
[26]  Kuiper, N.H. (1960) Tests Concerning Random Points on a Circle. Indagationes Mathematicae (Proceedings), 63, 38-47.
https://doi.org/10.1016/S1385-7258(60)50006-0
[27]  Frhr. v. Hammerstein, E.A. (2010) Generalized Hyperbolic Distributions: Theory and Applications to CDO Pricing. PhD Dissertation, Albert-Ludwigs-Universität, Freiburg.
[28]  Laptev, D. (2018, March 18) GitHub-dlaptev/VarGamma: Variance Gamma Distribution (Python): Pdf, cdf, rand and fit. GitHub.
https://github.com/dlaptev/VarGamma
[29]  Scipy (n.d.) Scipy.stats.exponweib—SciPy v1.9.3 Manual.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.exponweib.html
[30]  Scipy (n.d.) Scipy.stats.invweibull—SciPy v1.9.3 Manual.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invweibull.html
[31]  Eberlein, E. and Prause, K. (2002) The Generalized Hyperbolic Model: Financial Derivatives and Risk Measures. The First World Congress of the Bachelier Finance Society, Paris, 29 June-1 July 2000, 245-267.
https://doi.org/10.1007/978-3-662-12429-1_12
[32]  Fajardo, J. and Farias, A. (2004) Generalized Hyperbolic Distributions and Brazilian Data. Brazilian Review of Econometrics, 24, 249.
https://doi.org/10.12660/bre.v24n22004.2712
[33]  Prause, K. (1997) Modelling Financial Data Using Generalized Hyperbolic Distributions. Universität Freiburg, Freiburg.
[34]  Wang, C. (2005) On the Numerics of Estimating Generalized Hyperbolic Distribution. Master Thesis, Humboldt-Universität zu Berlin, Berlin.
[35]  Zhao, J. and Li, X. (2022) Goodness of Fit Test Based on BLUS Residuals for Error Distribution of Regression Model. Applied Mathematics, 13, 672-682.
https://doi.org/10.4236/am.2022.138042

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133