全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ontogenes and Their Role in Cellular Construction

DOI: 10.4236/abb.2023.142004, PP. 49-73

Keywords: Cell, Morphogenesis, Ontogene, Ontogenesis, Electromagnetic Field, Drosophila

Full-Text   Cite this paper   Add to My Lib

Abstract:

The genes referred to as ontogenes are responsible for conditional mutations. Based on the results of the research of conditional mutations in D. melanogaster, we attempt to figure out the biological role of ontogenes. We conclude that ontogenes in the process of individual development control the construction of the living organisms of cells (cellular construction), which comprises the induction of cell division, determination of division plane, and the location of daughter cells after the division is completed. The process of morphogenesis consists of cellular construction and protein synthesis. Protein synthesis is controlled by protein-coding (Mendelian) genes. Mendelian genes are switched on by ontogenes. In terms of the two-component genome composed of Mendelian genes and ontogenes, we consider 1) the concept of biological character; 2) interspecific incompatibility; 3) ontogenesis; 4) phylogenesis; and 5) mutagenesis. Ontogenes, which control cellular construction, possess the specific features unusual for Mendelian genes, namely, 1) the activity in germ line tissue; 2) remote interaction; and 3) activity in a compacted state (heterochromatization). These specific features of ontogenes suggest that unlike the Mendelian genes with their chemical activity, ontogenes possess another type of activity (biophysical) involving induction of an electromagnetic field.

References

[1]  Gaisinovich, A.E. (1988) The Birth and Development of Genetics. Nauka, Moscow. (In Russian)
[2]  Chadov, B.F. (2001) Mutations Capable of Inducing Speciation. In: Stegnij, V.N., Ed., Evolution Biology, Tomsk State University Press, Tomsk, 138-162. (In Russian)
[3]  Chadov, B.F. (2005) Features of Intraspecific Similarity and Peculiarities of Mendel’s Approach to Study of Heredity. Philosophy of Science, 3, 94-114. (In Russian)
[4]  Chadov, B.F., Chadova, E.V., Kopyl, S.A., Artemova, E.V., Khotskina, E.A. and Fedorova, N.B. (2004) From Genetics of Intraspecific Differences to Genetics of Intraspecific Similarity. Russian Journal of Genetics, 40, 945-958.
https://doi.org/10.1023/B:RUGE.0000041372.16880.02
[5]  Chadov, B.F., Chadova, E.V., Kopyl, S.A. and Fedorova, N.B. (2000) A New Class of Mutations in Drosophila melanogaster. Doklady Biological Sciences, 373, 423-426.
[6]  Chadov, B.F. (2000) Mutations in the Regulatory Genes in Drosophila melanogaster. Proceedings of the International Conference on Biodiversity and Dynamics of Ecosystems in North Eurasia, IC@G, Novosibirsk, 21-26 August 2000, 16-18.
[7]  Chadov, B.F., Fedorova, N.B., Chadova, E.V. and Khotskina, E.A. (2011) Conditional Mutations in Drosophila. Journal of Life Sciences, 5, 224-240.
[8]  Chadov, B.F., Fedorova, N.B. and Chadova, E.V. (2015) Conditional Mutations in Drosophila melanogaster: On the Occasion of the 150th Anniversary of G. Mendel’s Report in Brünn. Mutation Research/Reviews in Mutation Research, 765, 40-55.
https://doi.org/10.1016/j.mrrev.2015.06.001
[9]  Chadov, B.F. (2007) Ontogenes in Drosophila melanogaster: Genetic Features and Role in Onto- and Phylogeny. In: Korogodina, V.L., Chini, A. and Durante, M. (Eds.), Modern Problems of Genetics, Radiobiology, Radioecology and Evolution, Joint Institute for Nuclear Research, Dubna, 80-91.
[10]  Fedorova, N.B., Chadova, E.V. and Chadov, B.F. (2016) Genes and Ontogenes in Drosophila: The Role of RNA Forms. Transcriptomics, 4, Article ID; 1000137.
[11]  Ashburner, M. (1989) Drosophila. A Laboratory Handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 427-432.
[12]  Timofeeff-Ressovsky, N.V. (1927) Studies on the Phenotype Manifestation of Hereditary Factors. I. On the Phenotypic Manifestation of the Genovariation Radius incompletes in Drosophila funebris. Genetics, 12, 128-198.
https://doi.org/10.1093/genetics/12.2.128
[13]  Timofeeff-Ressovsky, N.V. (1996) Relation between Gene and Phenotypic Character. In: Gazenko, O.G. and Ivanov, V.I., Eds., N.V. Timofeeff-Ressovsky, Selected Works, Meditsina, Moscow, 59-84. (In Russian)
[14]  Chadov, B.F. and Fedorova, N.B. (2020) Conditional Mutations and New Genes in Drosophila. In: Fasullo, M. and Catala, A., Eds., Mutagenesis and Mitochondrial-Associated Pathologies, IntechOpen, London.
[15]  Chadov, B.F. and Fedorova, N.B. (2020) Inbreeding Depression and Heterosis as the Phenomena of Two-Component Genome. In: Advances in Genetics Research, Vol. 19, Nova Science Publishers, Inc., Hauppauge, 161-190.
[16]  Chadov, B.F. and Fedorova, N.B. (2019) The Mutations Disturbing the Bilateral Symmetry in Drosophila. SCIOL Genetic Science, 2, 139-152.
[17]  Neifakh, A.A. and Timofeeva, M.Ya. (1977) Molecular Biology of Developmental Processes. Nauka, Moscow. (In Russian)
[18]  Waddington, C.H. (1962) New Patterns in Genetics and Development. Columbia University Press, New York.
https://doi.org/10.7312/wadd92142
[19]  Chadov, B.F., Chadova, E.V., Kopyl, S.A., Khotskina, E.A. and Fedorova, N.B. (2004) Genes Controlling Development: Morphoses, Phenocopies, Dimorphs and Other Visible Expressions of Mutant genes. Russian Journal of Genetics, 40, 271-281.
https://doi.org/10.1023/B:RUGE.0000021627.82588.41
[20]  Chadov, B.F., Chadova, E.V. and Fedorova, N.B. (2012) Epigenetic Phenomenology in Conditional Mutants of Drosophila melanogaster: Morphoses and Modifications. In: Zakijan, S.M., Vlasov, S.M. and Dement’eva, E.V., Eds., Epigenetics, SD RAN, Novosibirsk, 499-533. (In Russian)
[21]  Chadov, B.F., Chadova, E.V. and Fedorova, N.B. (2015) Images of Morphoses and Modifications in Drosophila melanogaster Conditional Mutants.
https://doi.org/10.13140/RG.2.1.2721.9042
[22]  Chadov, B.F., Chadova, E.V. and Fedorova, N.B. (2017) The Genetics of Conditional Mutations and Individual Developmental Program in D. melanogaster. SCIOL Genetic Science, 1, 3-21.
[23]  Chadov, B.F., Chadova, E.V. and Fedorova, N.B. (2018) Conditional Mutations in Drosophila: Concept of Genes That Control Individual Development. Advances in Bioscience and Biotechnology, 9, 243-272.
https://doi.org/10.4236/abb.2018.96017
[24]  Chadov, B.F. and Fedorova, N.B. (2022) Ontogenes and Chromosome Nondisjunction in the D. melanogaster Meiosis. Advances in Bioscience and Biotechnology, 13, 317-335.
https://doi.org/10.4236/abb.2022.138020
[25]  Ashburner, M. (1989) Mosaics. In: Drosophila. A Laboratory Handbook, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 931-968.
[26]  Vasil’eva, L.A. (1999) Quantitative Traits: Genetic Properties and Methods of Analysis. ITsiG SO RAN, Novosibirsk. (In Russian)
[27]  Kondakov, N.I. (1975) Logicheskii slovar’—Spravochnik (Logical Dictionary— Handbook). Nauka, Moscow, 477. (In Russian)
[28]  Jacob, F. and Monod, J. (1961) Genetic Regulatory Mechanisms in the Synthesis of Proteins. Journal of Molecular Biology, 3, 318-356.
https://doi.org/10.1016/S0022-2836(61)80072-7
[29]  Belousov, L.V. (2006) A Morphomecanical Aspect of Epigenesis. Genetica (Russ.), 42, 1165-1169.
https://doi.org/10.1134/S1022795406090031
[30]  Chadov, B.F. and Fedorova, N.B. (2003) The Elementary Event of Development. Doklady Biological Sciences, 389, 183-187.
https://doi.org/10.1023/A:1023403800039
[31]  Chadov, B.F., Chadova, E.V. and Fedorova, N.B. (2019) Ontogenes and the Problem of Speciation. Journal of Evolutionary Science, 1, 33-47.
https://doi.org/10.14302/issn.2689-4602.jes-18-2431
[32]  Chadov, B.F. and Fedorova, N.B. (2018) Zygotic Selection in Drosophila melanogaster and a New Edition of Darwin’s Concept of Speciation. In: Podobina, V.M., Ed., Evolution of Life on the Earth, Proceedings of the V International Symposium, Publishing House of TSU, Tomsk, 49-51.
[33]  Auerbach, Ch. (1976) Mutation Research: Problems, Results, and Perspectives. Springer, New York.
[34]  Chadov, B.F., Fedorova, N.B. and Chadova, E.V. (2013) Parental Effects of Conditional Mutations and Their Explanations. Russian Journal of Genetics, 49, 141-150.
https://doi.org/10.1134/S1022795413020038
[35]  Finnegan, D.J. (1989) Eucaryotic Transposable Elements and Genome Evolution. Trends in Genetics, 5, 103-107.
https://doi.org/10.1016/0168-9525(89)90039-5
[36]  Ratner, V.A. and Vasil’eva, L.A. (2000) Induction of Transpositions of Mobile Genetic Elements by Stress Impacts. Sorosovskii Obrazovatel’nyi Zhurnal, 6, 14-20. (In Russian)
[37]  Ashburner, M. (1989) Hybrid Dysgenesis and Related Phenomena. In: Drosophila. A Laboratory Handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 969-1015.
[38]  Russo, V.E.A., Martienssen, R.A., Riggs, A.D. and Briggs, A.D., Eds. (1996) Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor Laboratory Press, New York.
[39]  Zakijan, S.M., Vlasov, S.M. and Dement’eva E.V., Eds. (2012) Epigenetics. SD RAN, Novosibirsk. (In Russian)
[40]  Baranov, V.S., Kuznetsova, T.V., Pendina, F.F., et al. (2012) Epigenetic Mechanisms in Human Normal and Pathological Development. In: Zakijan, S.M., Vlasov, S.M. and Dement’eva, E.V., Eds., Epigenetics, SD RAN, Novosibirsk, 225-266. (In Russian)
[41]  Bridges, С.В. (1916) Non-Disjunction as Proof of the Chromosome Theory of Heredity. Genetics, 1, 1-52.
https://doi.org/10.1093/genetics/1.1.1
[42]  Bridges, C.B. (1921) Proof of Non-Disjunction for the Fourth Chromosome of Drosophila melanogaster. Science, 53, 308.
https://doi.org/10.1126/science.53.1370.308.a
[43]  Chadov, B.F. (1991) From the Phenomenon of Nondisjunction to the Problem of Chromosome Co-Orientation (To the Commemoration of Bridges Paper Published 75 Years Ago). Genetika, 27, 1877-1903. (In Russian)
[44]  Ganetzky, B. and Hawley, R.S. (2016) The Centenary of GENETICS: Bridges to the Future. Genetics, 202, 15-23.
https://doi.org/10.1534/genetics.115.180182
[45]  Sturtevant, A.H. and Beadle, G.W. (1936) The Relations of Inversions in the X Chromosome of Drosophila melanogaster to Crossing over and Disjunction. Genetics, 21, 554-604.
https://doi.org/10.1093/genetics/21.5.554
[46]  Chadov, B.F. (1971) Nonhomologous Chromosome Pairing in Oogenesis of Drosophila melanogaster. Abstract of Dissertation for the Degree of PhD in Institute of Developmental Biology, Moscow. (In Russian)
[47]  Merriam, J.R. and Frost, J.N. (1964) Exchange and Nondisjunction of the X Chromosomes in Female Drosophila melanogaster. Genetics, 49, 109-122.
https://doi.org/10.1093/genetics/49.1.109
[48]  Ashburner, M. (1989) Inversions. In: Drosophila. A Laboratory Handbook, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 509-528.
[49]  Ashburner, M. (1989) Translocations. In: Drosophila. A Laboratory Handbook, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 549-574.
[50]  Dobzhansky, Th. (1931) The Decrease of Crossing over Observed in Translocations, and Its Probable Explanation. The American Naturalist, 65, 214.
https://doi.org/10.1086/280364
[51]  Dobzhansky, Th. (1932) Studies on Chromosome Conjugation. I. Translocations Involving the Second and the Y-Chromosomes of Drosophila melanogaster. Zeitschrift für induktive Abstammungsund Vererbungslehre, 60, 235-286.
https://doi.org/10.1007/BF01850271
[52]  Chadov, B.F., Chadova, E.V. and Fedorova, N.B. (2017) A Novel Type of Gene Interaction in D. melanogaster. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 795, 27-30.
https://doi.org/10.1016/j.mrfmmm.2017.01.002
[53]  Fedorova, N.B. and Chadov, B.F. (2020) Gene Interactions in Drosophila without Contacts and Chemical Intermediaries. International Conference on Cell and Experimental Biology, Virtual Conference, 9-11 December 2020, 6.
https://cellexpbiol.unitedscientificgroup.org/proceedings/CEB-2020_Abstracts.pdf
[54]  Zhimulev, I.F. (2002) General and Molecular Genetics. Novosibirsk State University Press, Novosibirsk. (In Russian)
[55]  Chadov, B.F. and Podoplelova, M.L. (1981) Nonhomologous Pairing and Spontaneous Meiotic Interchanges in Drosophila melanogaster Females. Mutation Research, 81, 311-327.
https://doi.org/10.1016/0027-5107(81)90119-6
[56]  Chadov, B.F. (1987) Near-Centromere Heterochromatin and Co-Orientation of Chromosomes in Dividing Cells of Drosophila. Genetica (Russia), 23, 1082-1087.
[57]  Chadov, B.F. (1996) Mechanism of Chromosome Nondisjunction in Drosophila Meiosis. In: Abbondandolo, A., Vig, B.K. and Roi, R., Eds., Chromosome Segregation and Aneuploidy-III, Ispra, E.C. Joint Research Center, Italy, 328-343.
[58]  Hawley, R.S., et al. (1992) There Are Two Mechanisms of Achiasmate Segregation in Drosophila Females, One of Which Requires Heterochromatic Homology. Developmental Genetics, 13, 440-467.
https://doi.org/10.1002/dvg.1020130608
[59]  Karpen, G.H., Le, M.H. and Le, H. (1996) Centric Heterochromatin and the Efficiency of Achiasmate Disjunction in Drosophila Female Meiosis. Science, 273, 118-122.
https://doi.org/10.1126/science.273.5271.118
[60]  Hughes, S.E., et al. (2009) Heterochromatic Threads Connect Oscillating Chromosomes during Prometaphase I in Drosophila Oocytes. PLOS Genetics, 5, e10000348.
https://doi.org/10.1371/journal.pgen.1000348
[61]  Zhimulev, I.F. (1998) Polytene Chromosomes, Heterochromatin and Position Effect Variegation. In: Advances in Genetics, Vol. 37, Elsevier Inc., Amsterdam, 1-555.
https://doi.org/10.1016/S0065-2660(08)60341-7
[62]  Panshin, I.B. (1992) The Second System of Hereditary Variation as a Consequence of Quantitative Regularities of Heterochromatic Gene Position Effect. In: Khvostova, V.V., Ed., The Gene Position Effect in the Studies, ICG SO RAN, Novosibirsk, 23-98. (In Russian)
[63]  Prokofieva-Belgovskaja, A.A. (1986) Heterochromatic Regions of Chromosomes. Nauka, Moscow. (In Russian)
[64]  Chadov, B.F. and Fedorova, N.B. (2021) Ontogenes and the Paradox of Homologous Pairing. Advances in Bioscience and Biotechnology, 12, 1-9.
https://doi.org/10.4236/abb.2021.121001
[65]  Blyumenfel’d, L.A. (1959) Abnormal Magnetic Properties of Nucleic Acids. Biofizika, 4, 515-519. (In Russian)
[66]  Arnold, A.R., Grodick, M.A. and Barton, J.K. (2016) DNA Charge Transport: From Chemical Principles to the Cell. Cell Chemical Biology, 23, 183-197.
https://doi.org/10.1016/j.chembiol.2015.11.010
[67]  Holmlin, R.E., Dandliker, P.J. and Barton, J.K. (1997) Charge Transfer through the DNA Base Stack. Angewandte Chemie International Edition, 36, 2714-2730.
https://doi.org/10.1002/anie.199727141
[68]  Polesskaya, O., Guschin, V., Kondratev, N., et al. (2018) On Possible Role of DNA Electrodynamics in Chromatin Regulation. Progress in Biophysics and Molecular Biology, 134, 50-54.
https://doi.org/10.1016/j.pbiomolbio.2017.12.006
[69]  Savelyev, I.V., Zyryanova, N.V., Polesskaya, O.O. and Myakishev-Rempel, M. (2019) On the Existence of the DNA Resonance Code and Its Possible Mechanistic Connection to the Neural Code. NeuroQuantology, 17, 56-71.
https://doi.org/10.14704/nq.2019.17.2.1973
[70]  Savelev, I. and Myakishev-Rempel, M. (2020) Possible Traces of Resonance Signaling in the Genome. Progress in Biophysics and Molecular Biology, 151, 23-31.
https://doi.org/10.1016/j.pbiomolbio.2019.11.010
[71]  Chadov, B.F., Fedorova, N.B., Chadova, E.V., Khotskina, E.A., Moshkin, M.P. and Petrovski, D.V. (2010) Genetic Mutation Affects Energy Status of Drosophila. Russian Journal of Genetics, 46, 1062-1066.
https://doi.org/10.1134/S1022795410090127
[72]  Fedorova, N.B. and Chadov, B.F. (2016) Genetics: The Energy Aspect. Regional Interdisciplinary Conference—Humboldt Kolleg “Energy Conversion: From Nature to Technology”, 28 August-2 September 2016, Novosibirsk, Russia.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133