全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On Fermat Last Theorem: The New Efficient Expression of a Hypothetical Solution as a Function of Its Fermat Divisors

DOI: 10.4236/ajcm.2023.131002, PP. 82-90

Keywords: Fermat’s Last Theorem, Fermat Divisors, Barlow’s Relations, Greatest Common Divisor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Denote by \"\" a non-trivial primitive solution of Fermat’s equation (p prime).We introduce, for the first time, what we call Fermat principal divisors \"\" of the triple \"\" defined as follows. \"\", \"\" and \"\". We show that it is possible to express a,b and c as function of the Fermat principal divisors. Denote by \"\"the set of possible non-trivial solutions of the Diophantine equation \"\". And, let \"\" (p prime). We prove that, in the first case of Fermat’s theorem, one has

\"\" .

In the second case of Fermat’s theorem, we show that



\"\", \"\",\"\".
Furthermore, we have implemented a python program to calculate the Fermat divisors of Pythagoreans triples. The results of this program, confirm the model used. We now have an effective tool to directly process Diophantine equations and that of Fermat.


References

[1]  Rimbenboim, P. (1999) Fermat’s Last Theorem for Amateurs. Springer-Verlag, New York.
[2]  Andrea, O. (2021) The Lost Proof of Fermat’s Last Theorem.
https://arxiv.org/abs/1704.06335
[3]  Mouanda, J.M. (2022) On Fermat’s Last Theorem and Galaxies of Sequences of Positives Integers. American Journal of Computational Mathematics, 12, 162-189.
https://doi.org/10.4236/ajcm.2022.121009
[4]  Nag, B.B. (2021) An Elementary Proof of Fermat’s Last Theorem for Epsilons. Advances in Pure Mathematics, 11, 735-740.
https://doi.org/10.4236/apm.2021.118048
[5]  (1981) Book Review. Bulletin (New Series) of the American Society, 4, 218-222.
[6]  Mouanda, J.M. (2022) On Fermat’s Last Theorem Matrix Version and Galaxies of Sequences of Circulant Matrices with Positive Integer as Entries. Global Journal of Science Frontier Research, 22, 37-65.
[7]  Filaseta, M. (1984) An Application or Faltings’ Result to Fermat’s Last Theorem. C. R. Math. Rep. Acad. Sci. Canada, 6, 31-32.
[8]  Wiles, A.J. (1995) Modular Elliptic Curves, and Fermat’s Last Theorem. Annals of Mathematics, 141, 443-551.
https://doi.org/10.2307/2118559
[9]  Chien, M.-T. and Meng, J. (2021) Fermat’s Equation over 2-By-2 Matrices. Bulletin of the Korean Mathematical Society, 58, 609-616.
[10]  Laubenbacher, R. and Pengelley, D. (2010) Voici ce que j’ai trouvé: Sophie Germain’s Grand Plan to Prove Fermat’s Last Theorem. Historia Mathematica, 37, 641-692.
[11]  Terjanian, G. (1977) Sur l’équation . C. R. Aca. Sc. Paris, 285, 973-975.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133