全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect on Optical and Antibacterial Activity of SnO2 and CuO Blended SnO2 Nanoparticles

DOI: 10.4236/snl.2023.132001, PP. 1-12

Keywords: SnO2, CuO Doped SnO2, Physiochemical Properties, Microbiological Activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanocrystalline SnO2 and CuO doped with SnO2 were prepared by the co-precipitation method and characterized for different physiochemical properties and microbiological activity. The composition and morphological formation were characterized by XRD, HRTEM, Raman, FTIR, and UV-vis spectroscopy. The Powder X-ray analysis reveals that Sn4+ ions have substituted the Cu2+ ions without changing the monoclinic structure of SnO2 but the average particle size of the SnO2 and CuO doped SnO2 samples from 11 and 5 nm respectively. However, it exhibits an inhibiting strong bacterial growth against tested bacterial strains.

References

[1]  Bargougui, R., Omri, K., Mhemdi, A. and Ammar, S. (2015) Synthesis and Characterization of SnO2 Nanoparticles: Effect of Hydrolysis Rate on the Optical Properties. Advanced Materials Letters, 6, 816-819.
https://doi.org/10.5185/amlett.2015.5844
[2]  Agrahari, V., Mathpal, M.C., Kumar, M. and Agarwal, A. (2015) Investigations of Optoelectronic Properties in DMS SnO2 Nanoparticles. Journal of Alloys and Compounds, 622, 48-53.
https://doi.org/10.1016/j.jallcom.2014.10.009
[3]  Song, H., Lee, K.H., Jeong, H., et al. (2013) A Simple Self-Assembly Route to Single Crystalline SnO2 Nanorod Growth by Oriented Attachment for Dye Sensitized Solar Cells. Nanoscale, 5, 1188-1194.
https://doi.org/10.1039/c2nr33114d
[4]  Naje, A.N., Norry, A.S. and Suhail, A.M. (2013) Preparation and Characterization of SnO2 Nanoparticles. International Journal of Innovative Research in Science, Engineering and Technology, 2, 7068-7072.
[5]  Anandan, K. and Rajendran, V. (2010) Size Controlled Synthesis of SnO2 Nanoparticles: Facile Solvothermal Process. Journal of Non-Oxide Glasses, 2, 83-89.
[6]  Khanom, R., Khan, M.A., Gafur, A., et al. (2017) Synthesis of SnO2 Nanopowders for Advanced Ceramics and Electronic Sensor Transducer Devices and Characterization and Band Gap. Nanoscience and Nanometrology, 3, 12.
https://doi.org/10.11648/j.nsnm.20170301.13
[7]  Fan, B., Hu, A., Chen, X., et al. (2016) Hierarchical Porous ZnMn2O4 Microspheres as a High-Performance Anode for Lithium-Ion Batteries. Electrochimica Acta, 213, 37-45.
https://doi.org/10.1016/j.electacta.2016.07.030
[8]  Ravichandran, K., Thirumurugan, K., Begum, N.J. and Snega, S. (2013) Investigation of p-Type SnO2: Zn Films Deposited Using a Simplified Spray Pyrolysis Technique. Superlattices and Microstructures, 60, 327-335.
https://doi.org/10.1016/j.spmi.2013.05.006
[9]  Yu, X.Y., Xu, R.X., Gao, C., et al. (2012) Novel 3D Hierarchical Cotton-Candy-Like CuO: Surfactant-Free Solvothermal Synthesis and Application in As(III) Removal. ACS Applied Materials & Interfaces, 4, 1954-1962.
https://doi.org/10.1021/am201663d
[10]  Wei, Y., Gao, C., Meng, F.L., et al. (2012) SnO2/Reduced Graphene Oxide Nanocomposite for the Simultaneous Electrochemical Detection of Cadmium(II), Lead(II), Copper(II), and Mercury(II): An Interesting Favorable Mutual Interference. The Journal of Physical Chemistry C, 116, 1034-1041.
https://doi.org/10.1021/jp209805c
[11]  Gao, S., Yang, S., Shu, J., et al. (2008) Green Fabrication of Hierarchical CuO Hollow Micro/Nanostructures and Enhanced Performance as Electrode Materials for Lithium-Ion Batteries. The Journal of Physical Chemistry C, 112, 19324-19328.
https://doi.org/10.1021/jp808545r
[12]  Patil, G.E., Kajale, D.D., Chavan, D.N., Pawar, N.K., et al. (2011) Synthesis, Characterization and Gas Sensing Performance of SnO2 Thin Films Prepared by Spray Pyrolysis. Bulletin of Materials Science, 34, 1-9.
https://doi.org/10.1007/s12034-011-0045-0
[13]  Okitsu, K., Mizukoshi, Y., Yamamoto, T.A., et al. (2007) Sonochemical Synthesis of Gold Nanoparticles on Chitosan. Materials Letters, 61, 3429-3431.
https://doi.org/10.1016/j.matlet.2006.11.090
[14]  Narsinga Rao, G., Yao, Y.D. and Chen, J.W. (2009) Evolution of Size, Morphology, and Magnetic Properties of CuO Nanoparticles by Thermal Annealing. Journal of Applied Physics, 105, Article ID: 093901.
https://doi.org/10.1063/1.3120785
[15]  Guo, S., Huang, Y., Jiang, Q., et al. (2010) Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-Reversal Polyelectrolyte. ACS nano, 4, 5505-5511.
https://doi.org/10.1021/nn101638u
[16]  Hillaireau, H. and Couvreur, P. (2006) Polymeric Nanoparticles as Drug Carriers. CRC Press, Boca Raton.
https://doi.org/10.1201/9781420021677-8
[17]  Zhang, J., Liu, J., Peng, Q., Wang, X. and Li, Y. (2006) Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors. Chemistry of Materials, 18, 867-871.
https://doi.org/10.1021/cm052256f
[18]  Dodd, A., McKinley, A., Saunders, M. and Tsuzuki, T. (2006) Mechanochemical Synthesis of Nanocrystalline SnO2-ZnO Photocatalysts. Nanotechnology, 17, 692.
https://doi.org/10.1088/0957-4484/17/3/013
[19]  Qamar, M.A., Shahid, S., Khan, S.A., Zaman, S. and Sarwar, M.N. (2017) Synthesis Characterization, Optical and Antibacterial Studies of Co-Doped SnO2 Nanoparticles. Digest Journal of Nanomaterials and Biostructures, 12, 1127-1135.
[20]  Khan, S.A., Noreen, F., Kanwal, S., Iqbal, A. and Hussain, G. (2018) Green Synthesis of ZnO and Cu-Doped ZnO Nanoparticles from Leaf Extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and Investigation of Their Biological and Photocatalytic Activities. Materials Science and Engineering: C, 82, 46-59.
https://doi.org/10.1016/j.msec.2017.08.071
[21]  Khan, S.A., Noreen, F., Kanwal, S. and Hussain, G. (2017) Comparative Synthesis, Characterization of Cu-Doped ZnO Nanoparticles and Their Antioxidant, Antibacterial, Antifungal and Photocatalytic Dye Degradation Activities. Digest Journal of Nanomaterials and Biostructures, 12, 877-879.
[22]  Reddy, K.M., Feris, K., Bell, J., Wingett, D.G., Hanley, C. and Punnoose, A. (2007) Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems. Applied Physics Letters, 90, Article ID: 213902.
https://doi.org/10.1063/1.2742324
[23]  Dutta, D.P., Sudarsan, V., Srinivasu, P., Vinu, A. and Tyagi, A.K. (2008) Indium Oxide and Europium/Dysprosium Doped Indium Oxide Nanoparticles: Sonochemical Synthesis, Characterization, and Photoluminescence Studies. The Journal of Physical Chemistry C, 112, 6781-6785.
https://doi.org/10.1021/jp800576y
[24]  Mastai, Y. and Gedanken, A. (2004) The Chemistry of Nanomaterials: Synthesis, Properties and Applications. In: Sonochemistry and Other Novel Methods Developed for the Synthesis of Nanoparticles, Wiley, Hoboken, 113-169.
https://doi.org/10.1002/352760247X.ch6
[25]  Gedanken, A. (2004) Using Sonochemistry for the Fabrication of Nanomaterials. Ultrasonics Sonochemistry, 11, 47-55.
https://doi.org/10.1016/j.ultsonch.2004.01.037
[26]  Kim, Y.J., Kim, Y.S., Chai, S.Y., et al. (2007) Syntheses of Monodispersed SnO2 and CeO2 Nanoparticles through the Self-Capping Role of 2-Ethylhexanoate Ligands. New Journal of Chemistry, 31, 260-264.
https://doi.org/10.1039/B609577A
[27]  Li, Q., Mahendra, S., Lyon, D.Y., et al. (2008) Antimicrobial Nanomaterials for Water Disinfection and Microbial Control: Potential Applications and Implications. Water Research, 42, 4591-4602.
https://doi.org/10.1016/j.watres.2008.08.015
[28]  You, C., Han, C., Wang, X., et al. (2012) The Progress of Silver Nanoparticles in the Antibacterial Mechanism, Clinical Application and Cytotoxicity. Molecular Biology Reports, 39, 9193-9201.
https://doi.org/10.1007/s11033-012-1792-8
[29]  Pani, S., Singh, S.K. and Mohapatra, B.K. (2019) Synthesis and Characterization of MnO Nano-Particles Using Thermal Plasma Technique. Transactions of the Indian Institute of Metals, 72, 65-71.
https://doi.org/10.1007/s12666-018-1461-2
[30]  Ren, W., Ai, Z., Jia, F., et al. (2007) Low Temperature Preparation and Visible Light Photocatalytic Activity of Mesoporous Carbon-Doped Crystalline TiO2. Applied Catalysis B: Environmental, 69, 138-144.
https://doi.org/10.1016/j.apcatb.2006.06.015
[31]  Velmurugan, K., Venkatachalapathy, V.S. and Sendhilnathan, S. (2010) Synthesis of Nickel Zinc Iron Nanoparticles by Coprecipitation Technique. Materials Research, 13, 299-303.
https://doi.org/10.1590/S1516-14392010000300005
[32]  Yao, N.Q., Liu, Z.C., Gu, G.R. and Wu, B.J. (2017) Structural, Optical, and Electrical Properties of Cu-Doped ZrO2 Films Prepared by Magnetron Co-Sputtering. Chinese Physics B, 26, Article ID: 106801.
https://doi.org/10.1088/1674-1056/26/10/106801
[33]  Elango, G. and Roopan, S.M. (2016) Efficacy of SnO2 Nanoparticles toward Photocatalytic Degradation of Methylene Blue Dye. Journal of Photochemistry and Photobiology B: Biology, 155, 34-38.
https://doi.org/10.1016/j.jphotobiol.2015.12.010
[34]  Tazikeh, S., Akbari, A., Talebi, A. and Talebi, E. (2014) Synthesis and Characterization of Tin Oxide Nanoparticles via the Co-Precipitation Method. Materials Science-Poland, 32, 98-101.
https://doi.org/10.2478/s13536-013-0164-y
[35]  Yang, Y., Di, X., Qingyong, W. and Peng, D. (2016) Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction. Scientific Reports, 6, Article No. 35158.
https://doi.org/10.1038/srep35158
[36]  Zhou, Q., Tang, C., Zhu, S.P., Chen, W.G. and Li, J. (2016) Synthesis, Characterisation and Sensing Properties of Sm2O3 Doped SnO2 Nanorods to C2H2 Gas Extracted from Power Transformer Oil. Materials Technology, 31, 364-370.
https://doi.org/10.1179/1753555715Y.0000000069
[37]  Chen, W.G., Gao, T.Y., Li, Q.Z. and Gan, H.L. (2014) Study on Enhanced H2 Gas Sensing Characteristics of CuO-SnO2 Nanostructures. 2014 ICHVE International Conference on High Voltage Engineering and Application, Poznan, 8-11 September 2014, 1-4.
[38]  Kumar, V., Sen, S., Muthe, K.P., Gaur, N.K., Gupta, S.K. and Yakhmi, J.V. (2009) Copper Doped SnO2 Nanowires as Highly Sensitive H2S Gas Sensor. Sensors and Actuators B: Chemical, 138, 587-590.
https://doi.org/10.1016/j.snb.2009.02.053
[39]  Ashkarran, A.A., Ghavami, M., Aghaverdi, H., et al. (2012) Bacterial Effects and Protein Corona Evaluations: Crucial Ignored Factors in the Prediction of Bio-Efficacy of Various Forms of Silver Nanoparticles. Chemical Research in Toxicology, 25, 1231-1242.
https://doi.org/10.1021/tx300083s
[40]  Masadeh, M.M., Karasneh, G.A., Al-Akhras, M.A., et al. (2015) Cerium Oxide and Iron Oxide Nanoparticles Abolish the Antibacterial Activity of Ciprofloxacin against Gram Positive and Gram Negative Biofilm Bacteria. Cytotechnology, 67, 427-435.
https://doi.org/10.1007/s10616-014-9701-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133