Experimental Evaluation of Thermal Conductivity and Other Thermophysical Properties of Nanofluids Based on Functionalized (-OH) Mwcnt Nanoparticles Dispersed in Distilled Water
A possible way to increase thermal conductivity of working fluids, while keeping pressure drop at acceptable levels, is through nanofluids. Nanofluids are nano-sized particles dispersed in conventional working fluids. A great number of materials have potential to be used in nanoparticles production and then in nanofluids; one of them is Multi-Walled Carbon Nano Tubes (MWCNT). They have thermal conductivity around 3000 W/mK while other materials used as nanoparticles like CuO have thermal conductivity of 76.5 W/mK. Due to this fact, MWCNT nanoparticles have potential to be used in nanofluids production, aiming to increase heat transfer rate in energy systems. In this context, the main goal of this paper is to evaluate from the synthesis to the experimental measurement of thermal conductivity of nanofluid samples based on functionalized (-OH) MWCNT nanoparticles. They will be analyzed nanoparticles with different functionalization degrees (4% wt, 6% wt, and 9% wt). In addition, it will be quantified other thermophysical properties (dynamic viscosity, specific heat and specific mass) of the synthetized nanofluids. So, the present work can contribute with experimental data that will help researches in the study and development of MWCNT nanofluids. According to the results, the maximum increment obtained in thermal conductivity was 10.65% in relation to the base fluid (water).
References
[1]
Choi, S.U.-S. (1998) Nanofluid Technology: Current Status and Future Research (No. ANL/ET/CP-97466). Argonne National Lab.(ANL), Argonne. https://www.osti.gov/biblio/11048
[2]
Silva, B.A.A. (2010) Caracterização de nanofluidos do ponto de vista termofísico. Universidade de Aveiro, Aveiro. (In Portuguese) http://hdl.handle.net/10773/3914
[3]
Choi, S.U. and Eastman, J.A. (1995) Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne. https://www.osti.gov/biblio/196525
[4]
Chupin, A., Hu, L.W. and Buongiorno, J. (2008) Applications of Nano-Fluids to Enhance LWR Accidents Management in in-Vessel Retention and Emergency Core Cooling Systems. Proceedings of the 2008 International Congress on Advances in Nuclear Power Plants-ICAPP’08, Anaheim, 8-12 June 2008, 1707-1714. https://inis.iaea.org/search/search.aspx?orig_q=RN:42094768
[5]
Fotovvat, B., Behzadnasab, M., Mirabedini, S.M. and Mohammadloo, H.E. (2022) Anti-Corrosion Performance and Mechanical Properties of Epoxy Coatings Containing Microcapsules Filled with Linseed Oil and Modified Ceria Nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, Article ID: 129157. https://doi.org/10.1016/j.colsurfa.2022.129157
[6]
Kobayashi, Y., Nagatsuka, M., Akino, K., Yamauchi, N., Nakashima, K., Inose, T., et al. (2022) Development of Methods for Fabricating Nanoparticles Composed of Magnetite, Gold, and Silica toward Diagnostic Imaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 643, Article ID: 128773. https://doi.org/10.1016/j.colsurfa.2022.128773
[7]
Mori, T., Iseki, N., Ito, Y. and Kitamura, K. (2022) Thickening of Aqueous Nanoparticle Suspension Using DC Electric Field. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, Article ID: 129387. https://doi.org/10.1016/j.colsurfa.2022.129387
[8]
Wang, D., Fan, Z., Min, H., Wang, X., Li, H., Wei, G. and Wang, J. (2022) Construction of NIR Etchable Nanoparticles via Co-Assembly Strategy for Appointed Delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, Article ID: 129395. https://doi.org/10.1016/j.colsurfa.2022.129395
[9]
Li, Y., Tung, S., Schneider, E. and Xi, S. (2009) A Review on Development of Nanofluid Preparation and Characterization. Powder Technology, 196, 89-101. https://doi.org/10.1016/j.powtec.2009.07.025
[10]
Paul, G., Chopkar, M., Manna, I. and Das, P.K. (2010) Techniques for Measuring the Thermal Conductivity of Nanofluids: A Review. Renewable and Sustainable Energy Reviews, 14, 1913-1924. https://doi.org/10.1016/j.rser.2010.03.017
[11]
Banisharif, A., Estellé, P., Rashidi, A., Van Vaerenbergh, S. and Aghajani, M. (2021) Heat Transfer Properties of Metal, Metal Oxides, and Carbon Water-Based Nanofluids in the Ethanol Condensation Process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 622, Article ID: 126720. https://doi.org/10.1016/j.colsurfa.2021.126720
[12]
Ilyas, S.U., Pendyala, R. and Narahari, M. (2017) Stability and Thermal Analysis of MWCNT-Thermal Oil-Based Nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 527, 11-22. https://doi.org/10.1016/j.colsurfa.2017.05.004
[13]
Li, X., Wang, H. and Luo, B. (2021) The Thermophysical Properties and Enhanced Heat Transfer Performance of SiC-MWCNTs Hybrid Nanofluids for Car Radiator System. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612, Article ID: 125968. https://doi.org/10.1016/j.colsurfa.2020.125968
[14]
Lamas, B., Abreu, B., Fonseca, A., Martins, N. and Oliveira, M. (2014) Critical Analysis of the Thermal Conductivity Models for CNT Based Nanofluids. International Journal of Thermal Sciences, 78, 65-76. https://doi.org/10.1016/j.ijthermalsci.2013.11.017
[15]
Maxwell, J.C. (2010) A Treatise on Electricity and Magnetism. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511709340
[16]
Hamilton, R.L. and Crosser, O.K. (1962) Thermal Conductivity of Heterogeneous Two-Component Systems. Industrial & Engineering Chemistry Fundamentals, 1, 187-191. https://doi.org/10.1021/i160003a005
[17]
Xie, H., Lee, H., Youn, W. and Choi, M. (2003) Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities. Journal of Applied Physics, 94, 4967-4971. https://doi.org/10.1063/1.1613374
[18]
Wen, D. and Ding, Y. (2004) Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions. International Journal of Heat and Mass Transfer, 47, 5181-5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
[19]
Liu, M.-S., Lin, M.C.-C., Huang, I.-T. and Wang, C.-C. (2005) Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluids. International Communications in Heat and Mass Transfer, 32, 1202-1210. https://doi.org/10.1016/j.icheatmasstransfer.2005.05.005
[20]
Xuan, Y. and Li, Q. (2000) Heat Transfer Enhancement of Nanofluids. International Journal of Heat and Fluid Flow, 21, 58-64. https://doi.org/10.1016/S0142-727X(99)00067-3
[21]
Murshed, S.M.S., Leong, K.C. and Yang, C. (2005) Enhanced Thermal Conductivity of TiO2—Water Based Nanofluids. International Journal of Thermal Sciences, 44, 367-373. https://doi.org/10.1016/j.ijthermalsci.2004.12.005
[22]
Leong, K.C., Yang, C. and Murshed, S.M.S. (2006) A Model for the Thermal Conductivity of Nanofluids—The Effect of Interfacial Layer. Journal of Nanoparticle Research, 8, 245-254. https://doi.org/10.1007/s11051-005-9018-9
[23]
Rocha, M.S., Cabral, E.L.L. and Sabundjian, G. (2015) Thermophysical Characterization of Al2O3 and ZrO2 Nanofluids as Emergency Cooling Fluids of Future Generations of Nuclear Reactors. 2015 International Congress on Advances in Nuclear Power Plants, Nice, 3-6 May 2015. https://www.researchgate.net/publication/277247302_Thermophysical_Characterizati on_of_Al2O3_and_ZrO2_Nanofluids_as_Emergency_Cooling_Fluids_of_Future_Generations_of_Nuclear_Reactors
[24]
Munkhbayar, B., Bat-Erdene, M., Ochirkhuyag, B., Sarangerel, D., Battsengel, B., Chung, H. and Jeong, H. (2012) An Experimental Study of the Planetary Ball Milling Effect on Dispersibility and Thermal Conductivity of MWCNTs-Based Aqueous Nanofluids. Materials Research Bulletin, 47, 4187-4196. https://doi.org/10.1016/j.materresbull.2012.08.073
[25]
Soltanimehr, M. and Afrand, M. (2016) Thermal Conductivity Enhancement of COOH-Functionalized MWCNTs/Ethylene Glycol—Water Nanofluid for Application in Heating and Cooling Systems. Applied Thermal Engineering, 105, 716-723. https://doi.org/10.1016/j.applthermaleng.2016.03.089
[26]
Singh, S., Kumar, S. and Ghosh, S.K. (2021) Development of a Unique Multi-Layer Perceptron Neural Architecture and Mathematical Model for Predicting Thermal Conductivity of Distilled Water Based Nanofluids Using Experimental Data. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, Article ID: 127184. https://doi.org/10.1016/j.colsurfa.2021.127184
[27]
Tiwari, A.K., Pandya, N.S., Said, Z., Öztop, H.F. and Abu-Hamdeh, N. (2021) 4S Consideration (Synthesis, Sonication, Surfactant, Stability) for the Thermal Conductivity of CeO2 with MWCNT and Water Based Hybrid Nanofluid: An Experimental Assessment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, Article ID: 125918. https://doi.org/10.1016/j.colsurfa.2020.125918
[28]
Esfe, M.H., Alidoust, S., Ardeshiri, E.M. and Toghraie, D. (2022) Comparative Rheological Study on Hybrid Nanofluids with the Same Structure of MWCNT (50%)-ZnO (50%)/SAE XWX to Select the Best Performance of Nano-Lubricants Using Response Surface Modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641, Article ID: 128543. https://doi.org/10.1016/j.colsurfa.2022.128543
[29]
Esfe, M.H., Toghraie, D., Esfandeh, S. and Alidoust, S. (2022) Measurement of Thermal Conductivity of Triple Hybrid Water Based Nanofluid Containing MWCNT (10%)-Al2O3 (60%)-ZnO (30%) Nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 647, Article ID: 129083. https://doi.org/10.1016/j.colsurfa.2022.129083
[30]
Sivashanmugam, P. (2012) Application of Nanofluids in Heat Transfer. In: Kazi, S.N., Ed., An Overview of Heat Transfer Phenomena, IntechOpen, London. https://doi.org/10.5772/52496
[31]
Oliveira, L.R. (2018) Síntese e Caracterização de nanofluidos para aplicação em sistemas Térmicos. Universidade Federal de Uberlândia, Uberlândia. (In Portuguese) https://repositorio.ufu.br/handle/123456789/21077
[32]
Xuan, Y. and Roetzel, W. (2000) Conceptions for Heat Transfer Correlation of Nanofluids. International Journal of Heat and Mass Transfer, 43, 3701-3707. https://doi.org/10.1016/S0017-9310(99)00369-5
[33]
Flores, M.C. (2016) Investigação experimental das propriedades termofísicas e da convecção forçada de nanofluido de grafeno. Universisade Federal de Uberlândia, Uberlândia. (In Portuguese) https://repositorio.ufu.br/handle/123456789/17761
[34]
Yu, W., Xie, H., Wang, X. and Wang, X. (2011) Significant Thermal Conductivity Enhancement for Nanofluids Containing Graphene Nanosheets. Physics Letters A, 375, 1323-1328. https://doi.org/10.1016/j.physleta.2011.01.040
[35]
Murshed, S.S. (2011) Determination of Effective Specific Heat of Nanofluids. Journal of Experimental Nanoscience, 6, 539-546. https://doi.org/10.1080/17458080.2010.498838
[36]
Gómez, A.O.C. (2015) Avaliação experimental do desempenho termo-hidráulico de nanofluidos de nanotubos de carbono de parede simples em escoamento monofásico em regime turbulent. Universidade Federal de Uberlândia, Uberlândia. (In Portuguese) https://repositorio.ufu.br/handle/123456789/14988
[37]
Gómez, A.O.C. (2019) Avaliação experimental da transferência de calor e perda de pressão de nanofluidos em escoamento monofásico em dutos. Universidade Federal de Uberlândia, Uberlândia. (In Portuguese) https://repositorio.ufu.br/handle/123456789/25417
[38]
Hoffmann, A.R.K. (2014) Análise experimental do desempenho termo-hidráulico de nanofluidos de nanotubos de carbono em escoamento monofásico. Universidade Federal de Uberlândia, Uberlândia. (In Portuguese) https://repositorio.ufu.br/handle/123456789/14752
[39]
Halder, U., Roy, R.K., Biswas, R., Khan, D., Mazumder, K. and Bandopadhyay, R. (2022) Synthesis of Copper Oxide Nanoparticles Using Capsular Polymeric Substances Produced by Bacillus altitudinis and Investigation of Its Efficacy to Kill Pathogenic Pseudomonas aeruginosa. Chemical Engineering Journal Advances, 11, Article ID: 100294. https://doi.org/10.1016/j.ceja.2022.100294
[40]
Briceño-Ahumada, Z., Soltero-Martínez, J.F.A. and Castillo, R. (2021) Aqueous Foams and Emulsions Stabilized by Mixtures of Silica Nanoparticles and Surfactants: A State-of-the-Art Review. Chemical Engineering Journal Advances, 7, Article ID: 100116. https://doi.org/10.1016/j.ceja.2021.100116
[41]
Baldelli, A., Etayash, H., Oguzlu, H., Mandal, R., Jiang, F., Hancock, R.E. and Pratap-Singh, A. (2022) Antimicrobial Properties of Spray-Dried Cellulose Nanocrystals and Metal Oxide-Based Nanoparticles-in-Microspheres. Chemical Engineering Journal Advances, 10, Article ID: 100273. https://doi.org/10.1016/j.ceja.2022.100273
[42]
Verma, A.K., Rajput, S., Bhattacharyya, K. and Chamkha, A.J. (2022) Nanoparticle’s Radius Effect on Unsteady Mixed Convective Copper-Water Nanofluid Flow over an Expanding Sheet in Porous Medium with Boundary Slip. Chemical Engineering Journal Advances, 12, Article ID: 100366. https://doi.org/10.1016/j.ceja.2022.100366