全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improved Catalytic Reaction of Biotemplated Palladium Nanoparticles through Immobilized Metal Affinity Purification

DOI: 10.4236/anp.2023.121003, PP. 22-31

Keywords: Protein Expression, Nanoparticle Synthesis, Turnover Frequency, Suzuki-Miyaura

Full-Text   Cite this paper   Add to My Lib

Abstract:

To investigate the effect purification plays on nanoparticle (NP) synthesis and catalytic activity, three copies of Pd4 (TSNAVHPTLRHL) fused to the N-terminus of Green Fluorescent Protein (GFP) was produced recombinantly and its characteristics pre and post purification was assessed. An E. coli expression system was employed, and purification was performed with Immobilized Metal Affinity Column (IMAC). Transmission electron microscopy (TEM) was utilized to examine the morphology of NPs synthesized with an enriched protein sample and ImageJ was used to determine the average size to be 2.44 nm. The turnover frequency of fabricated NP from the purified protein was analyzed by a model Suzuki-Miyaura coupling reactions and determined to be 33,000 hr-1. This value is three times higher than the turnover frequency when crude lysate containing (Pd4)3-GFP was used during NP synthesis. This result shows that enrichment enhanced the catalytic activity of NP.

References

[1]  Odularu, A.T. (2018) Metal Nanoparticles: Thermal Decomposition, Biomedicinal Applications to Cancer Treatment, and Future Perspectives. Bioinorganic Chemistry and Applications, 2018, Article ID: 9354708.
https://doi.org/10.1155/2018/9354708
[2]  Memon, H., Yasin, S., Khoso, N.A. and Memon, S. (2016) Study of Wrinkle Resistant, Breathable, Anti-UV Nanocoated Woven Polyester Fabric. Surface Review and Letters, 23, Article ID: 1650003.
https://doi.org/10.1142/S0218625X16500037
[3]  Memon, H. and Kumari, N. (2016) Study of Multifunctional Nanocoated Cold Plasma Treated Polyester Cotton Blended Curtains. Surface Review and Letters, 23, Article ID: 1650036.
https://doi.org/10.1142/S0218625X16500360
[4]  Memon, H., Yasin, S., Ali Khoso, N. and Hussain, M. (2015) Indoor Decontamination Textiles by Photocatalytic Oxidation: A Review. Journal of Nanotechnology, 2015, Article ID 104142.
https://doi.org/10.1155/2015/104142
[5]  Memon, H., Kumari, N., Jatoi, A.W. and Khoso, N.A. (2017) Study of the Indoor Decontamination Using Nanocoated Woven Polyester Fabric. International Nano Letters, 7, 1-7.
https://doi.org/10.1007/s40089-016-0194-7
[6]  Memon, H., Wang, H., Yasin, S. and Halepoto, A. (2018) Influence of Incorporating Silver Nanoparticles in Protease Treatment on Fiber Friction, Antistatic, and Antibacterial Properties of Wool Fibers. Journal of Chemistry, 2018, Article ID: 4845687.
https://doi.org/10.1155/2018/4845687
[7]  Chen, W.X., Yu, J.S., Hu, W., et al. (2016) Titanate Nanowire/NiO Nanoflake Core/Shell Heterostructured Nanonanocomposite Catalyst for Methylene Blue Photodegradation. RSC Advances, 6, 67827-67832.
https://doi.org/10.1039/C6RA13744J
[8]  Mosleh, I., Shahsavari, H.R., Beitle, R. and Beyzavi, M.H. (2020) Recombinant Peptide Fusion Protein-Templated Palladium Nanoparticles for Suzuki-Miyaura and Stille Coupling Reactions. ChemCatChem, 12, 2942-2946.
https://doi.org/10.1002/cctc.201902099
[9]  Xiong, Y. and Lu, X. (2015) Metallic Nanostructures: From Controlled Synthesis to Applications. Springer International Publishing, Berlin.
https://doi.org/10.1007/978-3-319-11304-3
[10]  Pacardo, D.B., Sethi, M., Jones, S.E., et al. (2009) Biomimetic Synthesis of pd Nanocatalysts for the Stille Coupling Reaction. ACS Nano, 3, 1288-1296.
https://doi.org/10.1021/nn9002709
[11]  Coppage, R., Slocik, J.M., Sethi, M., et al. (2010) Elucidation of Peptide Effects That Control the Activity of Nanoparticles. Angewandte Chemie—International Edition, 49, 3767-3770.
https://doi.org/10.1002/anie.200906949
[12]  Coppage, R., Slocik, J.M., Briggs, B.D., et al. (2012) Determining Peptide Sequence Effects That Control the Size, Structure, and Function of Nanoparticles. ACS Nano, 6, 1625-1636.
https://doi.org/10.1021/nn204600d
[13]  Bhandari, R., Coppage, R. and Knecht, M.R. (2012) Mimicking Nature’s Strategies for the Design of Nanocatalysts. Catalysis Science & Technology, 2, 256-266.
https://doi.org/10.1039/C1CY00350J
[14]  Coppage, R., et al. (2013) Exploiting Localized Surface Binding Effects to Enhance the Catalytic Reactivity of Peptide-Capped Nanoparticles. Journal of the American Chemical Society, 135, 11048-11054.
https://doi.org/10.1021/ja402215t
[15]  Yu, L., ur Rahman Memon, H., Bhavsar, P.S. and Yasin, S. (2016) Fabrication of Alginate Fibers Loaded with Silver Nanoparticles Biosynthesized via Dolcetto Grape Leaves (Vitis vinifera cv.): Morphological, Antimicrobial Characterization and In Vitro Release Studies. Materials Focus, 5, 216-221.
https://doi.org/10.1166/mat.2016.1317
[16]  Wang, W., Anderson, C.F., Wang, Z., et al. (2017) Peptide-Templated Noble Metal Catalysts: Syntheses and Applications. Chemical Science, 8, 3310-3324.
https://doi.org/10.1039/C7SC00069C
[17]  Mosleh, I., Benamara, M., Greenlee, L., Beyzavi, M.H. and Beitle, R. (2019) Recombinant Peptide Fusion Proteins Enable Palladium Nanoparticle Growth. Materials Letters, 252, 68-71.
https://doi.org/10.1016/j.matlet.2019.05.080
[18]  Ibinola, S. and Beitle, B. (2021) Recombinant Production and Purification of Green Fluorescent Protein (GFP)-Fused Metal Binding Protein for Palladium Nanoparticle Synthesis. Ann Arbor.
https://www.proquest.com/dissertations-theses/recombinant-production-purification-green/docview/2634873355/se-2?accountid=8361
[19]  Scholarworks@uark, S. and Aljewari, H. (2019) Production and Purification of Basic Fibroblast Growth Factor Production and Purification of Basic Fibroblast Growth Factor Fused to two Collagen Binding Domains Expressed in E. coli BL21 Fused to Two Collagen Binding Domains expressed in E. coli BL21 Using Flask and Fed-Batch Using Flask and Fed-Batch.
https://scholarworks.uark.edu/etd/3521
[20]  Tejada-Vaprio, R., et al. (2020) Recombinant Peptide Fusion Construction for Protein-Templated Catalytic Palladium Nanoparticles. Biotechnology Progress, 36, e2956.
https://doi.org/10.1002/btpr.2956
[21]  Riggs, P. (2013) Fusion Protein. In: Brenner’s Encyclopedia of Genetics, 2nd Edition, Elsevier Inc., Amsterdam, 134-135.
https://doi.org/10.1016/B978-0-12-374984-0.00565-9
[22]  Falke, J.J. and Corbin, J.A. (2004) Affinity Tags for Protein Purification.
[23]  Rizk, M., Antranikian, G. and Elleuche, S. (2012) End-to-End Gene Fusions and Their Impact on the Production of Multifunctional Biomass Degrading Enzymes. Biochemical and Biophysical Research Communications, 428, 1-5.
https://doi.org/10.1016/j.bbrc.2012.09.142
[24]  Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. and Prashert, D.C. (1994) Green Fluorescent Protein as a Marker for Gene Expression. Science (1979), 263, 802-805.
https://doi.org/10.1126/science.8303295
[25]  Tsien, R.Y. (1998) The Green Fluorescent Protein. Annual Review of Biochemistry, 67, 509-544.
https://doi.org/10.1146/annurev.biochem.67.1.509
[26]  Shimomura, O. (1979) Structure of the Chromophore of Aequorea Green Fluorescent Protein. FEBS Letters, 104, 220-222.
https://doi.org/10.1016/0014-5793(79)80818-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133