The Irvingia gabonensis kernels, which have
been extensively studied for their numerous virtues, including the ability to
act against the accumulation of fats in the body[1], contain
an oil. The aging of this oil under two different conditions of conservation
was the subject of our work. One of the results was an increase in the content
of long-chain carbonaceous fatty acids during aging for 11 months of storage at
low temperature (6℃) and at 30℃. This behavior does not find a concordant explanation by the comparative
analysis of the chemical indices. Hence, there is the need to use the Medium
Infra-Red spectroscopy (MIR) which allowed to clarify the information of the
saponification index, to justify the weakness of the formation of peroxides in
the case of the conservation at 30℃ and to
confirm the information given by the peroxide index. It also allowed to understand
the formation of the long carbon chains by
the “cis-trans” isomerization and the
homolytic cuts which intervene within the matrix of the fat by
the analysis of the number of -CH2 and -CH3 groups in the two conditions
of conservation. This study reveals that the rapid
References
[1]
Oben, J.E., Ngondi, J.L., Momo, C.N., Agbor, G.A. and Sobgui, C.S.M. (2008) The Use of a Cissus quadrangularis/Irvingia gabonensis Combination in the Management of Weight Loss: A Double-Blind Placebo-Controlled Study. Lipids in Health and Disease, 7, 12. https://doi.org/10.1186/1476-511X-7-12
[2]
Ngondi, J.L., Oben, J.E. and Minka, S.R. (2005) The Effect of Irvingia gabonensis Seeds on Body Weight and Blood Lipids of Obese Subjects in Cameroon. Lipids in Health and Disease, 4, 12. https://doi.org/10.1186/1476-511X-4-12
[3]
Mateus-Reguengo, L., Barbosa-Pereira, L., Rembangouet, W., Bertolino, M., Giordano, M., Rojo-Poveda, O. and Zeppa, G. (2020) Food Applications of Irvingia gabonensis (Aubry-Lecomte ex. O’Rorke) Baill., the “Bush Mango”: A Review. Critical Reviews in Food Science and Nutrition, 60, 2446-2459. https://doi.org/10.1080/10408398.2019.1646704
[4]
Etebu, E. (2013) Differences in Fruit Size, Postharvest Pathology and Phytochemicals between Irvingia gabonensis and Irvingia wombolu. Sustainable Agriculture Research, 2, 52-61. https://doi.org/10.5539/sar.v2n1p52
[5]
Yamoneka, J., Malumba, P., Lognay, G., Blecker, C. and Danthine, S. (2019) Irvingia gabonensis Seed Fat as Hard Stock to Formulate Blends for Trans Free Margarines. LWT—Food Science and Technology, 101, 747-756. https://doi.org/10.1016/j.lwt.2018.11.053
[6]
Sabikhi, L. and Kumar, M.S. (2012) Fatty Acid Profile of Unconventional Oilseeds. Advances in Food and Nutrition Research, 67, 141-184. https://doi.org/10.1016/B978-0-12-394598-3.00004-6
[7]
Agu, C.M., Menkiti, M.C., Ohale, P.E. and Ugonabo, V.I. (2021) Extraction Modeling, Kinetics, and Thermodynamics of Solvent Extraction of Irvingia gabonensis Kernel Oil, for Possible Industrial Application. Engineering Reports, 3, e12306. https://doi.org/10.1002/eng2.12306
[8]
Matos, L., Nzikou, J.M., Matouba, E., Pandzou-Yembe, V.N., Mapepoulou, T.G., Linder, M. and Desobry, S. (2009) Studies of Irvingia gabonensis Seed Kernels: Oil Technological Applications. Pakistan Journal of Nutrition, 8, 151-157. https://doi.org/10.3923/pjn.2009.151.157
[9]
AOAC: Official Methods of Analysis of the Association of Official Analytical Chemists (2019) Official Methods of Analysis of AOAC International. 21st Edition, AOAC, Washington DC.
[10]
(2000) Corps gras, graines oléagineux et produits derivés Tome 1 AFNOR; Edition prolia.
[11]
Yamoneka, J., Malumba, P., Blecker, C., Gindo, M., Richard, G., Fauconnier, M.L. and Danthine, S. (2015) Physicochemical Properties and Thermal Behaviour of African Wild Mango (Irvingia gabonensis) Seed Fat. LWT—Food Science and Technology, 64, 989-996. https://doi.org/10.1016/j.lwt.2015.06.035
[12]
Etong, D.I., Mustapha, A.O. and Taleat, A.A. (2014) Physicochemical Properties and Fatty Acid Composition of Dikanut (Irvingia gabonensis) Seed Oil. Research Journal of Chemical Sciences, 4, 70-74.
[13]
Omoniyi, S.A., Idowu, M.A., Adeola, A.A. and Folorunso, A.A. (2017) Chemical Composition and Industrial Benefits of Dikanut (Irvingia gabonensis) Kernel Oil: A Review. Nutrition & Food Science, 47, 741-751. https://doi.org/10.1108/NFS-03-2017-0054
[14]
Ould Amara-Leffad, L., Ramdane, H., Nekhoul, K., Ouznadji, A. and Koceir, E.A. (2019) Spirulina Effect on Modulation of Toxins Provided by Food, Impact on Hepatic and Renal Functions. Archives of Physiology and Biochemistry, 125, 184-194. https://doi.org/10.1080/13813455.2018.1444059
[15]
Diakite, K., Diagouraga, S., Diawara, M. and Fane, M. (2022) Etude des paramètres physico-chimiques des huiles de graine de coton produites en zone CMDT au Mali. International Journal of Biological and Chemical Sciences, 16, 1320-1330. https://doi.org/10.4314/ijbcs.v16i3.33
[16]
Kouamé, N.M.T., Soro, K., Mangara, A., Diarrassouba, N., Koulibaly, A.V. and Boraud, N.K.M. (2015) étude physico-chimique de sept (7) plantes spontanées alimentaires du centre-ouest de la Côte d’Ivoire. Journal of Applied Biosciences, 90, 8450-8463. https://doi.org/10.4314/jab.v90i1.12
[17]
Mampouya, D., Nakavoua, A.H.W., Loumouamou, A.N., Silou, T., Chalard, P., Verney, V. and Figueredo, G. (2013) Accelerated Ageing Effects on Cucurbita pepo Seed Oil. Advance Journal of Food Science and Technology, 5, 806-821. https://doi.org/10.19026/ajfst.5.3144
[18]
Langa, A.M., Pandonou, E.A., Akabassi, G.C., Akakpo, A.B., Idohou, R. and Assogbadjo, A.E. (2022) Physico-Chemical Properties of Crude Oil of Khaya senegalensis (Desr.) A. Juss According to Bioclimatic Zones in Chad. Moroccan Journal of Agricultural Sciences, 3, 203-206.
[19]
Kone, K.D., Konan, K.M., Katou, S.Y., Mamyrbekova-Bekro, J.A. and Yves-Alain, B. (2022) Caractérisation nutritionnelle des graines et de la matière grasse liquide de Pentaclethra macrophylla Benth. et Tieghemella heckelii de Côte d’Ivoire. International Journal of Innovation and Applied Studies, 36, 31-38.
[20]
Albarin, G.G., Alloue-Boraud, W.A.M., Jean, G.T. and Michel, L.I. (2018) Enzymatic Extraction and Characterization of Lipid Fraction Highly Rich in Omega-3 Fatty Acids from Mackerel (Scomber scombrus). American Journal of Food and Nutrition, 6, 76-82. https://doi.org/10.12691/ajfn-6-3-3
[21]
Belcadi-Haloui, B., Zekhnini, Z. and Hatimi, A. (2018) Comparative Study of Argan and Other Edible Oils Stability under Accelerated Oxidation. Indian Journal of Science and Technology, 11, 1-7. https://doi.org/10.17485/ijst/2018/v11i24/127763
[22]
Touati, S., Acila, S., Boujnah, D., Chehab, H., Ayadi, M. and Debouba, M. (2022) Geographical Location and Cultivar-Linked Changes on Chemical Properties of Olive Oils from Algeria. Food Science & Nutrition, 10, 1937-1949. https://doi.org/10.1002/fsn3.2810
[23]
Drici, D. and Eddine, A.S. (2019) Etude de qualité de l’huile d’olive algérienne: Effet des conditions de stockage.
[24]
Shotts, M.L., Plans, M., Wong, K., Milligan, A.M., Aykas, D.P. and Rodriguez-Saona, L.E. (2021) Application of Mid-Infrared Portable Spectrometer for the Rapid Determination of Trans-Fatty Acid Content in Lipid Extracts of Snack and Bakery Products. Journal of AOAC International, 104, 29-38. https://doi.org/10.1093/jaoacint/qsaa116
[25]
Olsztyńska-Janus, S. and Czarnecki, M.A. (2020) Effect of Elevated Temperature and UV Radiation on Molecular Structure of Linoleic Acid by ATR-IR and Two-Dimensional Correlation Spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 238, Article ID: 118436. https://doi.org/10.1016/j.saa.2020.118436
[26]
Li, Q., Chen, J., Huyan, Z., Kou, Y., Xu, L., Yu, X. and Gao, J.M. (2019) Application of Fourier Transform Infrared Spectroscopy for the Quality and Safety Analysis of Fats and Oils: A Review. Critical Reviews in Food Science and Nutrition, 59, 3597-3611. https://doi.org/10.1080/10408398.2018.1500441
[27]
Song, J., Park, J., Jung, J., Lee, C., Gim, S.Y., Ka, H. and Lee, J. (2015) Analysis of Trans Fat in Edible Oils with Cooking Process. Toxicological Research, 31, 307-312. https://doi.org/10.5487/TR.2015.31.3.307