全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bioinformatics Identification of ZNFs/LINC00520/miR-181d/BCL2 Axis as a Novel Network in Cisplatin-Resistant Lung Adenocarcinoma Cells

DOI: 10.4236/ajmb.2023.131006, PP. 67-93

Keywords: Computational Biology, Cisplatin, Drug Resistance, Autophagy, Lung Neoplasms

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: Resistance to cisplatin (DDP) leads to poor prognosis in patients with Lung Adenocarcinoma (LUAD) and limits its clinical application. It has been confirmed that autophagy promotes chemoresistance and, therefore, novel strategies to reverse chemoresistance by regulating autophagy are desperately needed. Methods: The differentially expressed lncRNAs (DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) between A549 and A549/DDP cell lines were identified using the limma package in R, after gene expression profiles were obtained from Gene Expression Omnibus (GEO) database. By combining Autophagy-Related Genes (ARGs) from Human Autophagy Database (HADb), the interactions lncRNA-miRNAs and the interactions miRNAs-mRNAs respectively predicted by miRcode and miRDB/Targetscan database, the autophagy-related ceRNA network was constructed. Then, extraction of ceRNA subnetwork and Cox regression analyses were performed. A prognosis-related ceRNA subnetwork was constructed, and the upstream Transcription Factors (TFs) regulating lncRNAs were predicted by the JASPAR database. Finally, the expression patterns of candidate genes were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) experiments. Results: A total of 3179 DEmRNAs, 180 DEmiRNAs, and 160 DElncRNAs were identified, and 35 DEmRNAs were contained in the HADb. Based on the ceRNA hypothesis, we established a ceRNA network, including 10 autophagy-related DEmRNAs, 9 DEmiRNAs, and 14 DElncRNAs. Then, LINC00520, miR-181d, and BCL2 were identified to construct a risk score model, which was confirmed to be a well-predicting prognostic factor. Furthermore, 5 TF ZNF family members were predicted to regulate LINC00520, whereas the RT-PCR results showed that the 5 ZNFs were consistent with the bioinformatics analysis. Finally, a ZNF regulatory LINC00520/miR-181d/BCL2 ceRNA subnetwork was constructed. Conclusions: An ZNFs/LINC00520/miR-181d/BCL2 axis as a novel network in DDP-resistant LUAD has been constructed successfully, which may provide potential therapeutic targets for LUAD.

References

[1]  Siegel, R.L., Miller, K.D. and Jemal, A. (2019) Cancer Statistics, 2019. CA: A Cancer Journal for Clinicians, 69, 7-34.
https://doi.org/10.3322/caac.21551
[2]  Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[3]  Devarakonda, S., Morgensztern, D. and Govindan, R. (2015) Genomic Alterations in Lung Adenocarcinoma. The Lancet Oncology, 16, e342-e351.
https://doi.org/10.1016/S1470-2045(15)00077-7
[4]  Wei, X., Shen, X., Ren, Y. and Hu, W. (2018) The Roles of microRNAs in Regulating Chemotherapy Resistance of Non-Small Cell Lung Cancer. Current Pharmaceutical Design, 23, 5983-5988.
https://doi.org/10.2174/1381612823666171018105207
[5]  Okouoyo, S., Herzer, K., Ucur, E., Mattern, J., Krammer, P.H., Debatin, K.M. and Herr, I. (2004) Rescue of Death Receptor and Mitochondrial Apoptosis Signaling in Resistant Human NSCLC in Vivo. International Journal of Cancer, 108, 580-587.
https://doi.org/10.1002/ijc.11585
[6]  An, X., Sarmiento, C., Tan, T. and Zhu, H. (2017) Regulation of Multidrug Resistance by microRNAs in Anti-Cancer Therapy. Acta Pharmaceutica Sinica B, 7, 38-51.
https://doi.org/10.1016/j.apsb.2016.09.002
[7]  Li, L., Zhu, T., Gao, Y.F., Zheng, W., Wang, C.J., Xiao, L., Huang, M.S., Yin, J.Y., Zhou, H.H. and Liu, Z.Q. (2016) Targeting DNA Damage Response in the Radio(Chemo)Therapy of Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 17, Article 839.
https://doi.org/10.3390/ijms17060839
[8]  Roos, W.P., Thomas, A.D. and Kaina, B. (2016) DNA Damage and the Balance between Survival and Death in Cancer Biology. Nature Reviews Cancer, 16, 20-33.
https://doi.org/10.1038/nrc.2015.2
[9]  Lin, C., Xie, L., Lu, Y., Hu, Z. and Chang, J. (2018) miR-133b Reverses Cisplatin Resistance by Targeting GSTP1 in Cisplatin-Resistant Lung Cancer Cells. International Journal of Molecular Medicine, 41, 2050-2058.
https://doi.org/10.3892/ijmm.2018.3382
[10]  Nguyen, L.V., Vanner, R., Dirks, P. and Eaves, C.J. (2012) Cancer Stem Cells: An Evolving Concept. Nature Reviews Cancer, 12, 133-143.
https://doi.org/10.1038/nrc3184
[11]  Kobayashi, S. (2015) Choose Delicately and Reuse Adequately: The Newly Revealed Process of Autophagy. Biological & Pharmaceutical Bulletin, 38, 1098-1103.
https://doi.org/10.1248/bpb.b15-00096
[12]  Su, Y.C., Davuluri, G.V., Chen, C.H., Shiau, D.C., Chen, C.C., Chen, C.L., Lin, Y.S. and Chang, C.P. (2016) Galectin-1-Induced Autophagy Facilitates Cisplatin Resistance of Hepatocellular Carcinoma. PLOS ONE, 11, e0148408.
https://doi.org/10.1371/journal.pone.0148408
[13]  Kim, M., Jung, J.Y., Choi, S., Lee, H., Morales, L.D., Koh, J.T., Kim, S.H., Choi, Y.D., Choi, C., Slaga, T.J., Kim, W.J. and Kim, D.J. (2017) GFRA1 Promotes Cisplatin-Induced Chemoresistance in Osteosarcoma by Inducing Autophagy. Autophagy, 13, 149-168.
https://doi.org/10.1080/15548627.2016.1239676
[14]  Tan, W.X., Xu, T.M., Zhou, Z.L., Lv, X.J., Liu, J., Zhang, W.J. and Cui, M.H. (2019) TRP14 Promotes Resistance to Cisplatin by Inducing Autophagy in Ovarian Cancer. Oncology Reports, 42, 1343-1354.
https://doi.org/10.3892/or.2019.7258
[15]  Salmena, L., Poliseno, L., Tay, Y., Kats, L. and Pandolfi, P.P. (2011) A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell, 146, 353-358.
https://doi.org/10.1016/j.cell.2011.07.014
[16]  Wang, Q., Jiang, S., Song, A., Hou, S., Wu, Q., Qi, L. and Gao, X. (2017) HOXD-AS1 Functions as an Oncogenic ceRNA to Promote NSCLC Cell Progression by Sequestering miR-147a. OncoTargets and Therapy, 10, 4753-4763.
https://doi.org/10.2147/OTT.S143787
[17]  Qian, B., Wang, D.M., Gu, X.S., Zhou, K., Wu, J., Zhang, C.Y. and He, X.Y. (2018) LncRNA H19 Serves as a ceRNA and Participates in Non-Small Cell Lung Cancer Development by Regulating microRNA-107. European Review for Medical and Pharmacological Sciences, 22, 5946-5953.
[18]  Fang, L., Wu, S., Zhu, X., Cai, J., Wu, J., He, Z., Liu, L., Zeng, M., Song, E., Li, J., Li, M. and Guan, H. (2019) MYEOV Functions as an Amplified Competing Endogenous RNA in Promoting Metastasis by Activating TGF-β Pathway in NSCLC. Oncogene, 38, 896-912.
https://doi.org/10.1038/s41388-018-0484-9
[19]  Lingling, J., Xiangao, J., Guiqing, H., Jichan, S., Feifei, S. and Haiyan, Z. (2019) SNHG20 Knockdown Suppresses Proliferation, Migration and Invasion, and Promotes Apoptosis in Non-Small Cell Lung Cancer through Acting as a miR-154 Sponge. Biomedicine & Pharmacotherapy, 112, Article ID: 108648.
https://doi.org/10.1016/j.biopha.2019.108648
[20]  Xiao, X.H. and He, S.Y. (2020) ELF1 Activated Long Non-Coding RNA CASC2 Inhibits Cisplatin Resistance of Non-Small Cell Lung Cancer via the miR-18a/IRF-2 Signaling Pathway. European Review for Medical and Pharmacological Sciences, 24, 3130-3142.
[21]  Sun, W., Zu, Y., Fu, X. and Deng, Y. (2017) Knockdown of lncRNA-XIST Enhances the Chemosensitivity of NSCLC Cells via Suppression of Autophagy. Oncology Reports, 38, 3347-3354.
https://doi.org/10.3892/or.2017.6056
[22]  Huang, F.-X., Chen, H.-J., Zheng, F.-X., Gao, Z.Y., Sun, P.F., Peng, Q., Liu, Y., Deng, X., Huang, Y.H., Zhao, C. and Miao, L.J. (2019) LncRNA BLACAT1 Is Involved in Chemoresistance of Non-Small Cell Lung Cancer Cells by Regulating Autophagy. International Journal of Oncology, 54, 339-347.
https://doi.org/10.3892/ijo.2018.4614
[23]  Sarin, N., Engel, F., Rothweiler, F., Cinatl, J., Michaelis, M., Frotschl, R., Frohlich, H. and Kalayda, G.V. (2018) Key Players of Cisplatin Resistance: Towards a Systems Pharmacology Approach. International Journal of Molecular Sciences, 19, Article 767.
https://doi.org/10.3390/ijms19030767
[24]  Hossian, A.K.M.N., Zahra, F.T., Poudel, S., Abshire, C.F., Polk, P., Garai, J., Zabaleta, J., Mikelis, C.M. and Mattheolabakis, G. (2021) Advanced Bioinformatic Analysis and Pathway Prediction of NSCLC Cells upon Cisplatin Resistance. Scientific Reports, 11, Article No. 6520.
https://doi.org/10.1038/s41598-021-85930-y
[25]  Edgar, R., Domrachev, M. and Lash, A.E. (2002) Gene Expression Omnibus: NCBI Gene Expression and Hybridization Array Data Repository. Nucleic Acids Research, 30, 207-210.
https://doi.org/10.1093/nar/30.1.207
[26]  Zeng, J.H., Liang, L., He, R.Q., Tang, R.X., Cai, X.Y., Chen, J.Q., Luo, D.Z. and Chen, G. (2017) Comprehensive Investigation of a Novel Differentially Expressed lncRNA Expression Profile Signature to Assess the Survival of Patients with Colorectal Adenocarcinoma. Oncotarget, 8, 16811-16828.
https://doi.org/10.18632/oncotarget.15161
[27]  Wu, W.K., Coffelt, S.B., Cho, C.H., Wang, X.J., Lee, C.W., Chan, F.K., Yu, J. and Sung, J.J. (2012) The Autophagic Paradox in Cancer Therapy. Oncogene, 31, 939-953.
https://doi.org/10.1038/onc.2011.295
[28]  Sui, X., Chen, R., Wang, Z., Huang, Z., Kong, N., Zhang, M., Han, W., Lou, F., Yang, J., Zhang, Q., Wang, X., He, C. and Pan, H. (2013) Autophagy and Chemotherapy Resistance: A Promising Therapeutic Target for Cancer Treatment. Cell Death & Disease, 4, e838.
https://doi.org/10.1038/cddis.2013.350
[29]  Hu, Y.R., Yu, Y.C., You, S., Li, K., Tong, X.C., Chen, S.R., Chen, E., Lin, X.Z. and Chen, Y.F. (2017) Long Noncoding RNA MALAT1 Regulates Autophagy Associated Chemoresistance via miR-23b-3p Sequestration in Gastric Cancer. Molecular Cancer, 16, Article No. 174.
https://doi.org/10.1186/s12943-017-0743-3
[30]  Xi, Z., Si, J. and Nan, J. (2019) LncRNA MALAT1 Potentiates Autophagy-Associated Cisplatin Resistance by Regulating the Microrna-30b/Autophagy-Related Gene 5 Axis in Gastric Cancer. International Journal of Oncology, 54, 239-248.
https://doi.org/10.3892/ijo.2018.4609
[31]  Wang, M., Han, D., Yuan, Z., Hu, H., Zhao, Z., Yang, R., Jin, Y., Zou, C., Chen, Y., Wang, G., Gao, X. and Wang, X. (2018) Long Non-Coding RNA H19 Confers 5-Fu Resistance in Colorectal Cancer by Promoting SIRT1-Mediated Autophagy. Cell Death & Disease, 9, Article 1149.
https://doi.org/10.1038/s41419-018-1187-4
[32]  Shi, Y., Yang, X., Xue, X., Sun, D., Cai, P., Song, Q., Zhang, B. and Qin, L. (2020) HANR Enhances Autophagy-Associated Sorafenib Resistance through miR-29b/ATG9A Axis in Hepatocellular Carcinoma. OncoTargets and Therapy, 13, 2127-2137.
https://doi.org/10.2147/OTT.S229913
[33]  Akanji, M.A., Rotimi, D. and Adeyemi, O.S. (2019) Hypoxia-Inducible Factors as an Alternative Source of Treatment Strategy for Cancer. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 8547846.
https://doi.org/10.1155/2019/8547846
[34]  Jiang, S. and Xu, Y. (2019) Annexin A2 Upregulation Protects Human Retinal Endothelial Cells from Oxygen-Glucose Deprivation Injury by Activating Autophagy. Experimental and Therapeutic Medicine, 18, 2901-2908.
https://doi.org/10.3892/etm.2019.7909
[35]  Kitajima, Y. and Miyazaki, K. (2013) The Critical Impact of HIF-1a on Gastric Cancer Biology. Cancers, 5, 15-26.
https://doi.org/10.3390/cancers5010015
[36]  Méndez, O., Zavadil, J., Esencay, M., Lukyanov, Y., Santovasi, D., Wang, S.C., Newcomb, E.W. and Zagzag, D. (2010) Knock down of HIF-1alpha in Glioma Cells Reduces Migration in Vitro and Invasion in Vivo and Impairs Their Ability to Form Tumor Spheres. Molecular Cancer, 9, Article 133.
https://doi.org/10.1186/1476-4598-9-133
[37]  Khan, M.A., Jain, V.K., Rizwanullah, M., Ahmad, J. and Jain, K. (2019) PI3K/AKT/mTOR Pathway Inhibitors in Triple-Negative Breast Cancer: A Review on Drug Discovery and Future Challenges. Drug Discovery Today, 24, 2181-2191.
https://doi.org/10.1016/j.drudis.2019.09.001
[38]  Hu, X., Xia, M., Wang, J., Yu, H., Chai, J., Zhang, Z., Sun, Y., Su, J. and Sun, L. (2020) Dual PI3K/mTOR Inhibitor PKI-402 Suppresses the Growth of Ovarian Cancer Cells by Degradation of Mcl-1 through Autophagy. Biomedicine & Pharmacotherapy, 129, Article ID: 110397.
https://doi.org/10.1016/j.biopha.2020.110397
[39]  Heras-Sandoval, D., Pérez-Rojas, J.M., Hernández-Damián, J. and Pedraza-Chaverri, J. (2014) The Role of PI3K/AKT/mTOR Pathway in the Modulation of Autophagy and the Clearance of Protein Aggregates in Neurodegeneration. Cellular Signalling, 26, 2694-2701.
https://doi.org/10.1016/j.cellsig.2014.08.019
[40]  Frantz, C., Stewart, K.M. and Weaver, V.M. (2010) The Extracellular Matrix at a Glance. Journal of Cell Science, 123, 4195-4200.
https://doi.org/10.1242/jcs.023820
[41]  Shehata, M. and Inokuchi, K. (2014) Does Autophagy Work in Synaptic Plasticity and Memory? Reviews in the Neurosciences, 25, 543-557.
https://doi.org/10.1515/revneuro-2014-0002
[42]  Shen, W. and Ganetzky, B. (2010) Nibbling away at Synaptic Development. Autophagy, 6, 168-169.
https://doi.org/10.4161/auto.6.1.10625
[43]  Dong, S., Wu, C., Song, C., Qi, B., Liu, L. and Xu, Y. (2021) Identification of Primary and Metastatic Lung Cancer-Related lncRNAs and Potential Targeted Drugs Based on ceRNA Network. Frontiers in Oncology, 10, Article 628930.
https://doi.org/10.3389/fonc.2020.628930
[44]  Zhao, R., Zhang, X., Zhang, Y., Zhang, Y., Yang, Y., Sun, Y., Zheng, X., Qu, A., Umwali, Y. and Zhang, Y. (2020) HOTTIP Predicts Poor Survival in Gastric Cancer Patients and Contributes to Cisplatin Resistance by Sponging miR-216a-5p. Frontiers in Cell and Developmental Biology, 8, Article 348.
https://doi.org/10.3389/fcell.2020.00348
[45]  Yu, X., Shi, W., Zhang, Y., Wang, X., Sun, S., Song, Z., Liu, M., Zeng, Q., Cui, S. and Qu, X. (2017) CXCL12/CXCR4 Axis Induced miR-125b Promotes Invasion and Confers 5-Fluorouracil Resistance through Enhancing Autophagy in Colorectal Cancer. Scientific Reports, 7, Article ID: 42226.
https://doi.org/10.1038/srep42226
[46]  Wang, S., Wu, J., Ren, J., Vlantis, A.C., Li, M.Y., Liu, S.Y.W., Ng, E.K.W., Chan, A. B.W., Luo, D.C., Liu, Z., Guo, W., Xue, L., Ng, S.K., van Hasselt, C.A., Tong, M.C. F. and Chen, G.G. (2018) MicroRNA-125b Interacts with Foxp3 to Induce Autophagy in Thyroid Cancer. Molecular Therapy: The Journal of the American Society of Gene Therapy, 26, 2295-2303.
https://doi.org/10.1016/j.ymthe.2018.06.015
[47]  Wang, J., Da, C., Su, Y., Song, R. and Bai, Z. (2021) MKNK2 Enhances Chemoresistance of Ovarian Cancer by Suppressing Autophagy via miR-125b. Biochemical and Biophysical Research Communications, 556, 31-38.
https://doi.org/10.1016/j.bbrc.2021.02.084
[48]  Maji, S., Panda, S., Samal, S.K., Shriwas, O., Rath, R., Pellecchia, M., Emdad, L., Das, S.K., Fisher, P.B. and Dash, R. (2018) Bcl-2 Antiapoptotic Family Proteins and Chemoresistance in Cancer. Advances in Cancer Research, 137, 37-75.
https://doi.org/10.1016/bs.acr.2017.11.001
[49]  Xia, G., Li, X., Chen, F. and Shao, Z. (2020) LncRNA LINC00520 Predicts Poor Prognosis and Promotes Progression of Lung Cancer by Inhibiting MiR-3175 Expression. Cancer Management and Research, 12, 5741-5748.
https://doi.org/10.2147/CMAR.S250631
[50]  Luan, W., Ding, Y., Yuan, H., Ma, S., Ruan, H., Wang, J., Lu, F. and Bu, X. (2020) Long Non-Coding RNA LINC00520 Promotes the Proliferation and Metastasis of Malignant Melanoma by Inducing the miR-125b-5p/EIF5A2 Axis. Journal of Experimental & Clinical Cancer Research, 39, Article No. 96.
https://doi.org/10.1186/s13046-020-01599-7
[51]  Wang, J.F., Xi, Z.N., Su, H.J., Bao, Z. and Qiao, Y.H. (2021) SP1-Induced Overexpression of LINC00520 Facilitates Non-Small Cell Lung Cancer Progression through miR-577/CCNE2 Pathway and Predicts Poor Prognosis. Human Cell, 34, 952-964.
https://doi.org/10.1007/s13577-021-00518-y
[52]  Zeybek, A., Oz, N., Kalemci, S., Edgünlü, T., Kiziltug, M.T., Tosun, K., Tunc, M., Tekin, L. and Erdal, M.E. (2019) Diagnostic Value of MiR-125b as a Potential Biomarker for Stage I Lung Adenocarcinoma. Current Molecular Medicine, 19, 216-227.
https://doi.org/10.2174/1566524019666190314113800
[53]  Zhao, X.D., He, Y.Y., Gao, J., Zhao, C., Zhang, L.L., Tian, J.Y. and Chen, H.L. (2014) High Expression of Bcl-2 Protein Predicts Favorable Outcome in Non-Small Cell Lung Cancer: Evidence from a Systematic Review and Meta-Analysis. Asian Pacific Journal of Cancer Prevention: APJCP, 15, 8861-8869.
https://doi.org/10.7314/APJCP.2014.15.20.8861
[54]  Chen, Z., Chen, X., Lei, T., Gu, Y., Gu, J., Huang, J., Lu, B., Yuan, L., Sun, M. and Wang, Z. (2020) Integrative Analysis of NSCLC Identifies LINC01234 as an Oncogenic lncRNA that Interacts with HNRNPA2B1 and Regulates miR-106b Biogenesis. Molecular Therapy: The Journal of the American Society of Gene Therapy, 28, 1479-1493.
https://doi.org/10.1016/j.ymthe.2020.03.010
[55]  Cui, J., Liu, J., Fan, L., Zhu, Y., Zhou, B., Wang, Y., Hua, W., Wei, W. and Sun, G. (2020) A Zinc Finger Family Protein, ZNF263, Promotes Hepatocellular Carcinoma Resistance to Apoptosis via Activation of ER Stress-Dependent Autophagy. Translational Oncology, 13, Article ID: 100851.
https://doi.org/10.1016/j.tranon.2020.100851
[56]  Gao, X.H., Li, J., Liu, Y., Liu, Q.Z., Hao, L.Q., Liu, L.J. and Zhang, W. (2017) ZNF148 Modulates TOP2A Expression and Cell Proliferation via ceRNA Regulatory Mechanism in Colorectal Cancer. Medicine, 96, e5845.
https://doi.org/10.1097/MD.0000000000005845

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133