The optimization of aquaculture production requires the selection of
efficient strains. Thus, genetic improvement has become one of the important
levers to boost the development of aquaculture. The objective of this study was
to carry out genetic characterization of Nile tilapia Oreochromis niloticus, one of the most
cultivated fish species in Senegal, in order to select an efficient strain to
optimize local fish production. Thus, fish from five different populations (Richard-Toll,
ANA, ITACA, Mbodiene and Sauvage) were analyzed, with 15 individuals per population. Genetic diversity and
population structure were assessed
using molecular genetic analyses by sequence characterized amplified region
(SCAR) and microsatellite (SSR) markers. The analyses of the SCARII marker were conducted on four populations (ANA,
ITACA, Sauvage and Mbodiene) while microsatellite analyses were
conducted on all five populations. The results show high levels of polymorphism
of SSR markers, and a high level of observed
heterozygosity (Ho), indicating a high within-population genetic
variability. These results are in agreement with the AMOVA results, which
indicated a high within-population genetic variability (94%). The genetic
structure analysis by DAPC indicates that the five populations analyzed are
structured into four groups, which are highly heterogeneous because they share common allele individuals. The analysis of
the genetic structure by AMOVA showed a low degree of differentiation between
the populations (6%), in agreement with the genetic differentiation
index (Fst = 0.059). The heterogeneity of studied populations implies a genetic
flow over time, which may have existed between the original populations. The
overall negative Tajima D values and low genetic differentiation indicate an
excess of rare mutations in the populations
studied, resulting from a recent population expansion from a limited number of
initial breeders isolated in locale hatcheries. Thus, further studies with a
much larger panel of markers are required to better differentiate the strains
and identify the most efficient ones for sustainable local aquaculture
production.
References
[1]
FAO (2022) The State of World Fisheries and Aquaculture 2022.
[2]
FAO (2018) The State of World Fisheries and Aquaculture 2018.
[3]
Lymer, D., Funge-Smith, S. and Miao, W. (2010) Status and Potential of Fisheries and Aquaculture in Asia and the Pacific 2010. 85 p.
[4]
Subasinghe, R., Soto, D. and Jia, J. (2009) Global Aquaculture and Its Role in Sustainable Development. Reviews in Aquaculture, 1, 2-9. https://doi.org/10.1111/j.1753-5131.2008.01002.x
[5]
Boyd, C.E., McNevin, A.A. and Davis, R.P. (2022) The Contribution of Fisheries and Aquaculture to the Global Protein Supply. Food Security, 14, 805-827. https://doi.org/10.1007/s12571-021-01246-9
[6]
Hannah Ritchie (2019) The World Now Produces More Seafood from Fish Farms than Wild Catch. Our World in Data.
[7]
Jurgensmeyer, K. (2019) Wild-Caught vs. Aquaculture (Farm-Raised) Fish: Myths and Facts. Sustainable Seafood Sampler Featuring Arctic Char, Black Cod, and Copper River Sockeye Salmon.
[8]
Tidwell, J.H. and Allan, G.L. (2001) Fish as Food: Aquaculture’s Contribution: Ecological and Economic Impacts and Contributions of Fish Farming and Capture Fisheries. EMBO Reports, 2, 958-963. https://doi.org/10.1093/embo-reports/kve236
[9]
FAO (2022) Philippines. Text by Paclibare, J.O. Fisheries and Aquaculture Division, Rome.
[10]
Adeleke, B., Robertson-Andersson, D., Moodley, G. and Taylor, S. (2021) Aquaculture in Africa: A Comparative Review of Egypt, Nigeria, and Uganda Vis-à-Vis South Africa. Reviews in Fisheries Science & Aquaculture, 29, 167-197. https://doi.org/10.1080/23308249.2020.1795615
[11]
Faye, E., Sarr, S.M., Toure, M.A., Gueye, S. and Gueye, M. (2018) Effets de la densité de stockage sur la croissance des alevins de Tilapia (Oreochromis niloticus L.) en cages fixes dans le Lac de Guiers, Sénégal. Afrique SCIENCE, 14, 378-390.
[12]
Amoussou, T.O., Toguyeni, A., Toko, I.I., Chikou, A. and Karim, I.Y.A. (2016) Caractéristiques biologiques et zootechniques des tilapias africains Oreochromisniloticus (Linnaeus, 1758) et Sarotherodon melanotheron Rüppell, 1852: Une revue. International Journal of Biological and Chemical Sciences, 10, 1869-1887. https://doi.org/10.4314/ijbcs.v10i4.35
[13]
Lacroix, E. (2004) Pisciculture en Zone Tropicale.
[14]
Thodesen, J., Rye, M., Wang, Y.-X., Li, S.-J., Bentsen, H.B., Yazdi, M.H., et al. (2013) Genetic Improvement of Tilapias in China: Genetic Parameters and Selection Responses in Growth, Survival and External Color Traits of Red Tilapia (Oreochromis spp.) after Four Generations of Multi-Trait Selection. Aquaculture, 416-417, 354-366. https://doi.org/10.1016/j.aquaculture.2013.09.047
[15]
Rutten, M.J.M., Komen, H., Deerenberg, R.M., Siwek, M. and Bovenhuis, H. (2004) Genetic Characterization of Four Strains of Nile tilapia (Oreochromis niloticus L.) Using Microsatellite Markers. Animal Genetics, 35, 93-97. https://doi.org/10.1111/j.1365-2052.2004.01090.x
[16]
Romana-Eguia, M.R.R., Ikeda, M., Basiao, Z.U. and Taniguchi, N. (2004) Genetic Diversity in Farmed Asian Nile and Red Hybrid Tilapia Stocks Evaluated from Microsatellite and Mitochondrial DNA Analysis. Aquaculture, 236, 131-150. https://doi.org/10.1016/j.aquaculture.2004.01.026
[17]
Hassanien, H.A. and Gilbey, J. (2005) Genetic Diversity and Differentiation of Nile tilapia (Oreochromis niloticus) Revealed by DNA Microsatellites. Aquaculture Research, 36, 1450-1457. https://doi.org/10.1111/j.1365-2109.2005.01368.x
[18]
Herkenhoff, M.E., Bovolenta, L.A., Broedel, O., dos Santos, L.D., de Oliveira, A.C., Chuffa, L.G.A., et al. (2021) Variant Expression Signatures of microRNAs and Protein Related to Growth in a Crossbreed between Two Strains of Nile tilapia (Oreochromis niloticus). Genomics, 113, 4303-4312. https://doi.org/10.1016/j.ygeno.2021.11.008
[19]
Muneer, P.M.A., Sivanandan, R., Gopalakrishnan, A., Basheer, V.S., Musammilu, K.K., Ponniah, A.G. (2011) Development and Characterization of RAPD and Microsatellite Markers for Genetic Variation Analysis in the Critically Endangered Yellow Catfish Horabagrus nigricollaris (Teleostei: Horabagridae). Biochemical Genetics, 49, 83-95. https://doi.org/10.1007/s10528-010-9389-1
[20]
Mahboob, S., Al-Ghanim, K.A., Al-Misned, F., Al-Balawi, H.F.A., Ashraf, A., Al-Mulhim, N.M.A. (2019) Genetic Diversity in Tilapia Populations in a Freshwater Reservoir Assayed by Randomly Amplified Polymorphic DNA Markers. Saudi Journal of Biological Sciences, 26, 363-367. https://doi.org/10.1016/j.sjbs.2018.11.015
[21]
Yang, L., Khan, M.A., Mei, Z., et al. (2014) Development of RAPD-SCAR Markers for Lonicera japonica (Caprifolicaceae) Variety Authentication by Improved RAPD and DNA Cloning. Revista de Biología Tropical, 62, 1649-1657. https://doi.org/10.15517/rbt.v62i4.13493
[22]
Li, S.-F., Tang, S.-J. and Cai, W.-Q. (2008) Two Rapd-Scar Markers in New Gift Nile tilapia (Oreochromis niloticus) Implication for Selection Tracking and Strains Identification. 8th International Symposium on Tilapia in Aquaculture 2008, Cairo, 12-14 October 2008, 219-229.
[23]
Li, S.-F., Tang, S.-J. and Cai, W.-Q. (2010) RAPD-SCAR Markers for Genetically Improved NEW GIFT Nile tilapia (Oreochromis niloticus L.) and Their Application in Strain Identification: RAPD-SCAR Markers for Genetically Improved NEW GIFT Nile tilapia (Oreochromis niloticus L.) and Their Application in Strain Identification. Zoological Research, 31, 147-154. https://doi.org/10.3724/SP.J.1141.2010.02147
[24]
Thodesen, J., Rye, M., Wang, Y.-X., Bentsen, H.B. and Gjedrem, T. (2012) Genetic Improvement of Tilapias in China: Genetic Parameters and Selection Responses in Fillet Traits of Nile tilapia (Oreochromis niloticus) after Six Generations of Multi-Trait Selection for Growth and Fillet Yield. Aquaculture, 366-367, 67-75. https://doi.org/10.1016/j.aquaculture.2012.08.028
[25]
Mireku, K.K., Kassam, D., Changadeya, W., Attipoe, F.Y.K. and Adinortey, C.A. (2017) Assessment of Genetic Variations of Nile tilapia (Oreochromis niloticus L.) in the Volta Lake of Ghana Using Microsatellite Markers. African Journal of Biotechnology, 16, 312-321. https://doi.org/10.5897/AJB2016.15796
[26]
Baggio, R.A., Orélis-Ribeiro, R. and Boeger, W.A. (2016) Identifying Nile tilapia Strains and Their Hybrids Farmed in Brazil Using Microsatellite Markers. Pesquisa Agropecuária Brasileira, 51, 1744-1750. https://doi.org/10.1590/s0100-204x2016001000006
[27]
Melo, D.C., Oliveira, D.A.A., Ribeiro, L.P., Teixeira, C.S., Sousa, A.B., Coelho, E.G.A., Crepaldi, D.V. and Teixeira, E.A. (2006) Caracterizacao genética de seis plantéis comerciais de tilápia (Oreochromis) utilizando marcadores microssatélites. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 58, 87-93. https://doi.org/10.1590/S0102-09352006000100013
[28]
Moreira, A.A., Hilsdorf, A.W.S., da Silva, J.V. and de Souza, V.R. (2007) Variabilida de genética de duas variedades de tilápianilótica por meio de marcadores micro-ssatélites. Pesquisa Agropecuária Brasileira, 42, 521-526. https://doi.org/10.1590/S0100-204X2007000400010
[29]
Ndiwa, T.C. (2014) Contribution to the Knowledge of the Populations of Nile tilapia (Oreochromis niloticus) Inhabiting Extreme Conditions of Temperature and Alkalinity. These de Doctorat En Biologie de l’Evolution de l’Ecologie de l’Université de Montpellier II, Montpellier, 155 p.
[30]
Peakall, R. and Smouse, P.E. (2012) GenAlEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research—An Update. Bioinformatics, 28, 2537-2539. https://doi.org/10.1093/bioinformatics/bts460
[31]
Nei, M. (1972) Genetic Distance between Populations. American Naturalist, 106, 283-292. https://doi.org/10.1086/282771
[32]
Tajima, F. (1989) Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics, 123, 585-595. https://doi.org/10.1093/genetics/123.3.585
[33]
Takezaki, N. and Nei, M. (1996) Genetic Distances and Reconstruction of Phylogenetic Trees from Microsatellite DNA. Genetics, 144, 389-399. https://doi.org/10.1093/genetics/144.1.389
[34]
Simbine, L., Viana da Silva, J. and Hilsdorf, A.W.S. (2014) The Genetic Diversity of Wild Oreochromis mossambicus Populations from the Mozambique Southern Watersheds as Evaluated by Microsatellites. Journal of Applied Ichthyology, 30, 272-280. https://doi.org/10.1111/jai.12390
[35]
Sharma, M., Fomda, B.A., Mazta, S., Sehgal, R., Singh, B., Singh, B.B.S. and Malla, N. (2013) Genetic Diversity and Population Genetic Structure Analysis of Echinococcus Granulosus Sensu Stricto Complex Based on Mitochondrial DNA Signature. PLOS ONE, 8, e82904. https://doi.org/10.1371/journal.pone.0082904