全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Generation of Lepton Masses Complementary to Higgs

DOI: 10.4236/jhepgc.2023.91014, PP. 142-167

Keywords: Electroweak Left-Handed Lagrangian, Dirac And Majorana Masses, Seesaw Relation

Full-Text   Cite this paper   Add to My Lib

Abstract:

A generation of bare lepton masses alternative to Higgs-like mechanisms is proposed. It can be used in a combination with the latter ones in attempt to explain why the coupling strengths to Higgs field span a wide range. The proposed mechanism also allows defining neutrino masses alternatively to the Dirac or Majorana types, since the effective bare masses of leptons are possible to generate without scalar terms in electroweak Lagrangians and motion equations. The proposed extension is fully compatible with standard methods of calculating radiative corrections and scattering amplitudes, since the left- and right-handed parts of EW Lagrangian do not change.

References

[1]  Quigg, C. (2009) Unanswered Questions in the Electroweak Theory. Annual Review of Nuclear and Particle Science, 59, 505-555.
https://doi.org/10.1146/annurev.nucl.010909.083126
[2]  Weinberg, S. (2020) Models of Lepton and Quark Masses. Physical Review D, 101, Article ID: 035020.
https://doi.org/10.1103/PhysRevD.101.035020
[3]  de Anda, F.J. and King, S.F. (2021) Quark and Lepton Mass and Mixing with Non-Universal Z from a 5D Standard Model with Gauged SO(3). Journal of High Energy Physics, 2021, Article No. 78.
https://doi.org/10.1007/JHEP03(2021)078
[4]  McCullough, M. (2021) Implications of New Physics Models for the Couplings of the Higgs Boson. Annual Review of Nuclear and Particle Science, 71, 529-551.
https://doi.org/10.1146/annurev-nucl-122320-041022
[5]  Englert, C., Miller, D.J. and Smaranda, D.D. (2020) Phenomenology of GUT-Inspired Gauge-Higgs Unification. Physics Letters B, 802, Article ID: 135261.
https://doi.org/10.1016/j.physletb.2020.135261
[6]  Anisha, U., Banerjee, J., Chakrabortty, C., Englert, M. and Spannowsky (2021) Extended Higgs Boson Sectors, Effective Field Theory, and Higgs Boson Phenomenology. Physical Review D, 103, Article ID: 096009.
https://doi.org/10.1103/PhysRevD.103.096009
[7]  Cacciapaglia, G., Deandrea, A. and Sridhar, K. (2022) Review of Fundamental Composite Dynamics. The European Physical Journal Special Topics, 231, 1221-1222.
https://doi.org/10.1140/epjs/s11734-022-00549-y
[8]  Hinata, A. (2020) Mass Hierarchy from the Flavor Symmetry in Supersymmetric Multi-Higgs Doublet Model. Journal of High Energy Physics, 2020, Article No. 147.
https://doi.org/10.1007/JHEP07(2020)147
[9]  Chaber, P., Dziewit, B., Holeczek, J., et al. (2018) Lepton Masses and Mixing in a Two-Higgs-Doublet Model. Physical Review D, 98, Article ID: 055007.
https://doi.org/10.1103/PhysRevD.98.055007
[10]  Witten, E. (2001) Lepton Number and Neutrino Masses. Nuclear Physics B: Proceedings Supplements, 91, 3-8.
https://doi.org/10.1016/S0920-5632(00)00916-6
[11]  Zralek, M. (2010) 50 Years of Neutrino Physics.
[12]  King, S.F. (2008) Neutrino Mass Models: A Road Map. Journal of Physics: Conference Series, 136, Article ID: 022038.
https://doi.org/10.1088/1742-6596/136/2/022038
[13]  Kim, C., Murthy, M. and Sahoo, D. (2022) Inferring the Nature of Active Neutrinos: Dirac or Majorana? Physical Review D, 105, Article ID: 113006.
https://doi.org/10.1103/PhysRevD.105.113006
[14]  Arguelles, C.A., Aurisano, A.J., Batell, B., et al. (2020) New Opportunities at the Next-Generation Neutrino Experiments I: BSM Neutrino Physics and Dark Matter. Reports on Progress in Physics, 83, Article ID: 124201.
https://doi.org/10.1088/1361-6633/ab9d12
[15]  DUNE Collaboration (2022) Snowmass Neutrino Frontier: DUNE Physics Summary.
[16]  Atkinson, O., Black, M., Englert, C., Lenz, A. and Rusov, A. (2022) MUonE, Muon g-2 and Electroweak Precision Constraints within 2HDMs.
[17]  Baryshevsky, V.G. and Porshnev, P.I. (2020) Pseudoscalar Corrections to Spin Motion Equation, Search for Electric Dipole Moment and Muon Magnetic (g-2) Factor.
[18]  Baryshevsky, V.G. and Porshnev, P.I. (2022) Predicting Outcomes of Electric Dipole and Magnetic Moment Experiments. Physica Scripta, 97, Article ID: 035302.
https://doi.org/10.1088/1402-4896/ac50c8
[19]  Dorsner, I. and Saad, S. (2020) Towards a Minimal SU(5) GUT. Physical Review D, 101, Article ID: 015009.
https://doi.org/10.1103/PhysRevD.101.015009
[20]  Moffat, J.W. (2021) Model of Boson and Fermion Particle Masses. The European Physical Journal Plus, 136, 601.
https://doi.org/10.1140/epjp/s13360-021-01608-4
[21]  Frampton, P.H. and Kephart, T.W. (2009) Fermion Mixings in SU(9) Family Unification. Physics Letters B, 681, 343-346.
https://doi.org/10.1016/j.physletb.2009.10.031
[22]  Peskin, M.E. and Schroeder, D.V. (1995) An Introduction to Quantum Field Theory. Addison-Wesley, Reading.
[23]  Greiner, W. and Muller, B. (2009) Gauge Theory of Weak Interactions. 4th Edition, Springer, Heidelberg.
https://doi.org/10.1007/978-3-540-87843-8
[24]  Zyla, P.A., Barnett, R.M., Beringer, J., Dahl, O., et al. (2020) Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2020, 083C01.
https://doi.org/10.1093/ptep/ptaa104
[25]  Dev, B., Babu, K.S., Denton, P., Machado, P., Arguelles, C.A., et al. (2019) Neutrino Non-Standard Interactions: A Status Report. SciPost Physics Proceedings, 2, Article No. 001.
https://doi.org/10.21468/SciPostPhysProc.2.001
[26]  Altmannshofer, W. and Zupan, J. (2022) Snowmass White Paper: Flavor Model Building.
http://arxiv.org/abs/2203.07726
[27]  Peskin, M.E. (2017) Lectures on the Theory of the Weak Interaction.
http://arxiv.org/abs/1708.09043
[28]  Berestetskii, V.B., Lifshits, E.M. and Pitaevskii, L.P. (1982) Quantum Electrodynamics. 2nd Edition, Pergamon Press, Oxford.
[29]  Dreiner, H.K., Haber, H.E., Martin, S.P. (2010) Two-Component Spinor Techniques and Feynman Rules for Quantum Field Theory and Supersymmetry. Physics Reports, 494, 1-196.
https://doi.org/10.1016/j.physrep.2010.05.002
[30]  Frampton, P.H., Kang, S.K., Kim, J.E. and Nam, S. (2020) Lμ-Lτ Effects to Quarks and Leptons from Flavor Unification. Physical Review D, 102, Article ID: 013005.
https://doi.org/10.1103/PhysRevD.102.013005
[31]  Kelly, K.J., Machado, P.A.N., Parke, S.J., Perez-Gonzalez, Y.F. and Funchal, R.Z. (2021) Neutrino Mass Ordering in Light of Recent Data. Physical Review D, 103, Article ID: 013004.
https://doi.org/10.1103/PhysRevD.103.013004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133