全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Resolving the Information Paradox with Probabilistic Spacetime

DOI: 10.4236/jhepgc.2023.91008, PP. 83-99

Keywords: Information Paradox, Hawking Radiation, Probabilistic Spacetime, Black Holes, Energy Fragment

Full-Text   Cite this paper   Add to My Lib

Abstract:

It has been 50 years since Hawking described the black hole (BH) information paradox. The combination of BH radiation and subsequent BH evaporation was found to take trapped information into oblivion contrary to the law of conservation of quantum information. Numerous attempts have been made since to resolve this paradox. A brief review herein documents how all these attempts have significant shortcomings, meaning the paradox is still unresolved. A relatively new cosmological theory offers a resolution despite not being developed for that purpose. The theory, entitled the probabilistic spacetime theory (PST), starts with an alteration in one basic assumption compared to all current cosmological theories. Spacetime, instead of being seen as a void or container of other entities, is viewed as the most fundamental entity in the universe, composed of energy fragments, and (in keeping with the conservation principle) impermeable to destruction. The potential contribution of the PST in resolving the information paradox is delineated, with the finding that the single change in the conceptualization of spacetime results in the disappearance of the paradox and not information.

References

[1]  Bekenstein, J.D. (1972) Nonexistence of Baryon Number of Static Black Holes. Physical Review D, 5, 1239-1246.
https://doi.org/10.1103/PhysRevD.5.1239
[2]  Hawking, S.W. (1975) Particle Creation by Black Holes. Communications in Mathematical Physics, 43, 199-220.
https://doi.org/10.1007/BF02345020
[3]  Hawking, S.W. (1976) Breakdown of Predictability in Gravitational Collapse. Physical Review D, 14, 2460-2473.
https://doi.org/10.1103/PhysRevD.14.2460
[4]  Maldacena, J. (2003) Eternal Black Holes in Anti-De Sitter. Journal of High Energy Physics, 2003, Article ID: 021.
https://doi.org/10.1088/1126-6708/2003/04/021
[5]  Papadodimas, K. and Raju, S. (2013) An Infalling Observer in AdS/CFT. Journal of High Energy Physics, 2013, Article No. 212.
https://doi.org/10.1007/JHEP10(2013)212
[6]  Papadodimas, K. and Raju, S. (2014) State-Dependent Bulk-Boundary Maps and Black Hole Complementarity. Physical Review D, 89, Article ID: 086010.
https://doi.org/10.1103/PhysRevD.89.086010
[7]  Papadodimas, K. and Suvrat, S. (2014) Black Hole Interior in the Holographic Correspondence and the Information Paradox. Physical Review Letters, 112, Article ID: 051301.
https://doi.org/10.1103/PhysRevLett.112.051301
[8]  Mathur, S.D. (2009) The Information Paradox: A Pedagogical Introduction. Classical and Quantum Gravity, 26, Article ID: 224001.
https://doi.org/10.1088/0264-9381/26/22/224001
[9]  Giddings, S.B. (1995) The Black Hole Information Paradox. ArXiv: 9508151v1.
[10]  Preskill, J. (1992) Do Black Holes Destroy Information? ArXiv: 9209058.
[11]  Ashtekar, A. (2020) Black Hole Evaporation: A Perspective from Loop Quantum Gravity. Universe, 6, Article No. 21.
https://doi.org/10.3390/universe6020021
[12]  Perez, A. (2017) Black Holes in Loop Quantum Gravity. Reports on Progress in Physics, 80, Article ID: 126901.
https://doi.org/10.1088/1361-6633/aa7e14
[13]  Giddings, S.B. (1994) Constraints on Black Hole Remnants. Physical Review D, 49, 947-957.
https://doi.org/10.1103/PhysRevD.49.947
[14]  Giddings, S.B. (1998) Comments on Information Loss and Remnants. Physical Review D, 49, 4078-4088.
https://doi.org/10.1103/PhysRevD.49.4078
[15]  Bekenstein, J.D. (1973) Black Holes and Entropy. Physical Review D, 7, 2333-2346.
https://doi.org/10.1103/PhysRevD.7.2333
[16]  Zhang, B., Cai, Q., Zhan, M. and You, L. (2013) Information Conservation Is Fundamental: Recovering the Lost Information in Hawking Radiation. International Journal of Modern Physics D, 22, Article ID: 1341014.
https://doi.org/10.1142/S0218271813410149
[17]  Zhang, B., Cai, Q., Zhan, M. and You, L. (2014) Correlation, Entropy, and Information Transfer in Black Hole Radiation. Chinese Science Bulletin, 59, 1057-1065.
https://doi.org/10.1007/s11434-014-0187-8
[18]  Mathur, S.D. (2011) What the Information Paradox Is Not. ArXiv: 1108.0302v2.
[19]  Zhang, B., Cai, Q., Zhan, M. and You, L. (2012) Comment on “What the Information Loss Is Not. ArXiv: 1210.2048v1.
[20]  Cadoni, M. and Sanna, A.P. (2022) Unitarity and Page Curve for Evaporation of 2D AdS Black Holes. Entropy, 24, Article No. 101.
https://doi.org/10.3390/e24010101
[21]  Ho, P. and Yokokura, Y. (2021) Firewall from Effective Field Theory. Universe, 7, Article No. 241.
https://doi.org/10.3390/universe7070241
[22]  Ali, S., Wang, X.-Y. and Liu, W.-B. (2019) Entropy Evolution in the Interior Volume of a Charged f(R) Black Hole. Communications in Theoretical Physics, 71, 718-722.
https://doi.org/10.1088/0253-6102/71/6/718
[23]  Chen, G.-R. and Huang, Y.-C. (2019) Revisiting the Tunneling of Charged Particles and Information Recovery from Kerr-Newman Black Holes. Physics Letters B, 792, 86-92.
https://doi.org/10.1016/j.physletb.2018.12.074
[24]  Giddings, S.B. (1992) Black Holes and Massive Remnants. Physical Review D, 46, Article No. 1347.
https://doi.org/10.1103/PhysRevD.46.1347
[25]  Nikolic, H. (2015) Gravitational Crystal Inside the Black Hole. Modern Physics Letters A, 30, Article ID: 1550201.
https://doi.org/10.1142/S0217732315502016
[26]  Hawking, S.W., Perry, M.J. and Strominger, A. (2016) Soft Hair on Black Holes. Physical Review Letters, 116, Article ID: 231301.
https://doi.org/10.1103/PhysRevLett.116.231301
[27]  Castelvecchi, D. (2016) Hawking’s Latest Black Hole Paper Splits Physicists. Nature, 529, Article No. 448.
https://doi.org/10.1038/529448a
[28]  Poplawski, N.J. (2010) Cosmology with Torsion: An Alternative to Cosmic Inflation. Physics Letters B, 694, 181-185.
https://doi.org/10.1016/j.physletb.2010.09.056
[29]  Susskind, L. and Lindesay, J. (2004) An Introduction to Black Holes, Information and String Theory Revolution. World Scientific Publishing Company, Singapore.
https://doi.org/10.1142/5689
[30]  Susskind, L., Thorlacius, L. and Uglum, J. (1993) The Stretched Horizon and Black Hole Complementarity. Physical Review D, 48, 3743-3761.
https://doi.org/10.1103/PhysRevD.48.3743
[31]  Hooft, G. (1985) On the Quantum Structure of a Black Hole. Nuclear Physics B, 256, 727-745.
https://doi.org/10.1016/0550-3213(85)90418-3
[32]  Hooft, G. (1990) The Black Hole Interpretation of String Theory. Nuclear Physics B, 335, 138-154.
https://doi.org/10.1016/0550-3213(90)90174-C
[33]  Bradler, K. and Adami, C. (2014) The Capacity of Black Holes to Transmit Quantum Information. Journal of High Energy Physics, 2014, Article No. 95.
https://doi.org/10.1007/JHEP05(2014)095
[34]  Gyongyosi, L. (2014) A Statistical Model of Information Evaporation of Perfectly Reflecting Black Holes. International Journal of Quantum Information, 12, Article ID: 1560025.
https://doi.org/10.1142/S0219749915600254
[35]  Lunin, O. and Mathur, S.D. (2002) AdS/CFT Duality and the Black Hole Information Paradox. Nuclear Physics B, 623, 342-394.
https://doi.org/10.1016/S0550-3213(01)00620-4
[36]  Mathur, S.D. (2005) The Fuzzball Proposal for Black Holes: An Elementary Review. Fortschritte der Physik, 53, 793-827.
https://doi.org/10.1002/prop.200410203
[37]  Mathur, S.D., Saxena, A. and Srivastava, Y. (2004) Constructing “Hair” for the Three Charge Hole. Nuclear Physics B, 680, 415-449.
https://doi.org/10.1016/j.nuclphysb.2003.12.022
[38]  Kanitscheider, I., Skenderis, K. and Taylor, M. (2007) Fuzzballs with Internal Excitations. Journal of High Energy Physics, 2007, Article ID: 056.
https://doi.org/10.1088/1126-6708/2007/06/056
[39]  Skenderis, K. and Taylor, M. (2008) The Fuzzball Proposal for Black Holes. Physics Reports, 467, 117-171.
https://doi.org/10.1016/j.physrep.2008.08.001
[40]  Bena, I. and. Warner, N.P (2008) Black Holes, Black Rings, and Their Microstates. In: Bellucci, S., Ed., Supersymmetric Mechanics-Vol. 3. Lecture Notes in Physics, Vol. 755, Springer, Berlin, 1-92.
https://doi.org/10.1007/978-3-540-79523-0_1
[41]  Bena, I., Giusto, S., Martinec, E.J., Russo, R., Shigemori, M., Turton, D. and Warner, N.P. (2016) Smooth Horizonless Geometries Deep Inside the Black-Hole Regime. Physical Review Letters, 117, Article ID: 201601.
https://doi.org/10.1103/PhysRevLett.117.201601
[42]  Raju, S. (2022) Lessons from the Information Paradox. Physics Reports, 943, 1-80.
https://doi.org/10.1016/j.physrep.2021.10.001
[43]  Almheiri, A., Marolf, D., Polchinski, J. and Sully, J. (2013) Black Holes: Complementarity or Firewalls? Journal of High Energy Physics, 2013, Article No. 62.
https://doi.org/10.1007/JHEP02(2013)062
[44]  Merali, Z. (2013) Astrophysics: Fire in the Hole! Nature, 496, 20-23.
https://doi.org/10.1038/496020a
[45]  Merali, Z. (2016) LIGO Black Hole Echoes Hint at General-Relativity Breakdown. Nature, 540, Article ID: 21135.
https://doi.org/10.1038/nature.2016.21135
[46]  Westerweck, J., Nielsen, A., Fischer-Birnholtz, O., Cabero, M., Capano, C., Thomas, D., Krishnan, B., Meadors, G. and Alexander, A.H. (2018) Low Significance of Evidence for Black Hole Echoes in Gravitational Wave Data. Physical Review D, 97, Article ID: 124037.
https://doi.org/10.1103/PhysRevD.97.124037
[47]  Barbón, J.L.F., (2009) Black Holes, Information and Holography. Journal of Physics: Conference Series, 171, Article ID: 012009.
https://doi.org/10.1088/1742-6596/171/1/012009
[48]  Marolf, D. (2009) Black Holes, AdS, and CFTs. General Relativity and Gravitation, 41, 903-917.
https://doi.org/10.1007/s10714-008-0749-7
[49]  Hawking, S.W. (2014) Information Preservation and Weather Forecasting for Black Holes. ArXiv: 1401.5761v1.
[50]  Vaz, C. (2014) Quantum Gravitational Dust Collapse Does Not Result in a Black Hole. ArXiv: 1407.3832v2.
[51]  Culeto, H. (2014) On the Vaz No Horizon Black Hole. ArXiv: 1407.7119v2.
[52]  Corda, C. (2015) Time Dependent Schrödinger Equation for Black Hole Evaporation: No Information Loss. Annals of Physics, 353, 71-82.
https://doi.org/10.1016/j.aop.2014.11.002
[53]  Corda, C. (2015) Precise Model of Hawking Radiation from the Tunneling Mechanism. Classical and Quantum Gravity, 32, Article ID: 195007.
https://doi.org/10.1088/0264-9381/32/19/195007
[54]  Corda, C. (2015) Quasi-Normal Modes: The “Electrons” of Black Holes as “Gravitational Atoms”? Implications for the Black Hole Information Puzzle. Advances in High Energy Physics, 2015, Article ID: 867601.
https://doi.org/10.1155/2015/867601
[55]  Corda, C., Hendi, S.H., Katebi, R. and Schmidt, N.O. (2014) Hawking Radiation-Quasi-Normal Modes Correspondence and Effective States for Nonextremal Reissner-Nordstrom Black Holes. Advances in High Energy Physics, 2014, Article ID: 527874.
https://doi.org/10.1155/2014/527874
[56]  Pardy, M. (2016) Energy Shift of H-Atom Electrons Due to Gibbons-Hawking Thermal Bath. Journal of High Energy Physics, Gravitation and Cosmology, 2, 472-477.
https://doi.org/10.4236/jhepgc.2016.24041
[57]  Guo, X.-K. and Cai, Q.-Y. (2018) Hidden Messenger from Quantum Geometry: Towards Information Conservation in Quantum Gravity. Modern Physics Letters A, 33, Article ID: 1850103.
https://doi.org/10.1142/S0217732318501031
[58]  Volovik, G.E. (2022) Macroscopic Quantum Tunneling: From Quantum Vortices to Black Holes and Universe. ArXiv: 2108.00419v10.
[59]  Wang, X.-Y. and Liu, W.-B. (2019) Information Paradox in a Kerr-Newman Black Hole under Generalized Hawking Radiation. Nuclear Physics B, 943, Article ID: 114614.
https://doi.org/10.1016/j.nuclphysb.2019.114614
[60]  Almheiri, A., Hartman, T., Maldacena, J., Shaghoulian, E. and Tajdini, A. (2020) Replica Wormholes and the Entropy of Hawking Radiation. Journal of High Energy Physics, 2020, Article No. 13.
https://doi.org/10.1007/JHEP05(2020)013
[61]  Penington, G. (2020) Entanglement Wedge Reconstruction and the Information Paradox. Journal of High Energy Physics, 2020, Article No. 2.
https://doi.org/10.1007/JHEP09(2020)002
[62]  Almheiri, A., Hartman, T., Maldacena, J., Shaghoulian, E. and Tajdini, A. (2021) The Entropy of Hawking Radiation. Reviews of Modern Physics, 93, Article ID: 035002.
https://doi.org/10.1103/RevModPhys.93.035002
[63]  Goto, K., Hartman, T. and Tajdini, A. (2021) Replica Wormholes for an Evaporating 2D Black Hole. Journal of High Energy Physics, 2021, Article No. 289.
https://doi.org/10.1007/JHEP04(2021)289
[64]  Penington, G., Shenker, S.H., Stanford, D. and Yang, Z. (2022) Replica Wormholes and the Black Hole Interior. Journal of High Energy Physics, 2022, Article No. 205.
https://doi.org/10.1007/JHEP03(2022)205
[65]  Musser, G. (2020) The Most Famous Paradox in Physics Nears Its End. Quanta Magazine.
https://www.quantamagazine.org/the-most-famous-paradox-in-physics-nears-its-end-20201029
[66]  Maldacena, J. and Susskind, L. (2013) Cool Horizons for Entangled Black Holes. Fortschritte der Physik, 61, 781-811.
https://doi.org/10.1002/prop.201300020
[67]  Gao, P., Jafferis, D.L. and Wall, A.C. (2016) Traversible Wormholes via a Double Trace Deformation. ArXiv: 1608.05687v3.
[68]  Susskind, L. and Zhao, Y. (2018) Teleportation through the Wormhole. Physical Review D, 98, Article ID: 046016.
https://doi.org/10.1103/PhysRevD.98.046016
[69]  Sutter, P. (2022) A Spiderweb of Wormholes Could Solve a Fundamental Paradox First Proposed by Stephen Hawking. Live Science.
https://www.livescience.com/wormholes-may-be-stable-after-all
[70]  Guo, B., Hughes, M., Mathur, S. and Mehta, M. (2021) Contrasting the Fuzzball and Wormhole Paradigms for Black Holes. Turkish Journal of Physics, 45, Article 1.
https://doi.org/10.55730/1300-0101.1000
[71]  Mathur, S.D. (2021) The Elastic Vacuum. International Journal of Modern Physics D, 30, Article ID: 214001.
https://doi.org/10.1142/S0218271821410017
[72]  Doren, D.M. and Harasymiw, J. (2021) Everything Is Probabilistic Spacetime: An Integrative Theory. International Journal of Cosmology, Astronomy and Astrophysics, 3, 130-144.
https://doi.org/10.18689/ijcaa-1000127
[73]  Abazov, V.M., et al. (2021) Odderon Exchange from Elastic Scattering Differences between pp and Data at 1.96 TeV and from pp Forward Scattering Measurements. Physical Review Letters, 127, Article ID: 062003.
[74]  Migdal, A.B. (1959) Superfluidity and the Moments of Inertia of Nuclei. Nuclear Physics, 13, 655-674.
https://doi.org/10.1016/0029-5582(59)90264-0
[75]  Page, D.N. (1993) Information in Black Hole Radiation. Physical Review Letters, 71, 3743-3746.
https://doi.org/10.1103/PhysRevLett.71.3743
[76]  Doren, D.M. and Harasymiw, J. (2020) Resolving the Hubble Constant Discrepancy: Revisiting the Effect of Local Environments. International Journal of Cosmology, Astronomy and Astrophysics, 2, 94-96.
https://doi.org/10.18689/ijcaa-1000121

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133