全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Framework to Regionalize Flow Information in a Catchment with Limited Hydrological Data

DOI: 10.4236/ojmh.2023.131002, PP. 22-51

Keywords: Prediction, Uncertainty, Regionalization, Mapping, Transplanting Flow Signatures

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes a framework for mapping flow information from a single gauge to the 9-ungauged river basins with distinct attributes. To establish the basic watershed characteristics at the gauged site, a hydrologic model was calibrated and validated against the historical continuous discharge dataset. The framework was then applied to account for the two watersheds’ proportionality in their similarity, such as the influence of land use on transplanting flow signatures to the ungauged site. Three land-use scenarios-discharges at the ungauged and gauged sites formed the basis of an equation mapping the gauged discharge signal to the ungauged site. In comparison with intermittent observed data, the framework prediction attained a precision of 0.85 ≥ NSE ≤ 0.95, 0.80 ≥ R2 ≤ 0.94, 0.56 ≥ bR2 ≤ 0.89. Despite considerable differences in the watershed area, slope, soils, and land cover, the framework satisfactorily depicted the variation in flow pulses at each of the 9 ungauged discharge sites. In the absence of sufficient hydrological information, for example, the presence of a single gauge, the framework provides an alternative method to estimate flow at ungauged sites, reducing uncertainties in the regionalization of model parameters.

References

[1]  Marahatta, S., Devkota, L.P. and Aryal, D. (2021) Application of Swat in Hydrological Simulation of Complex Mountainous River Basin (Part I: Model Development), Water (Switzerland), 13, Article 1546.
https://doi.org/10.3390/w13111546
[2]  Nkwasa, A., Chawanda, C.J., Msigwa, A., Komakech, H.C., Verbeiren, B. and van Griensven, A. (2020) How Can We Represent Seasonal Land Use Dynamics in SWAT and SWAT + Models for African Cultivated Catchments. Water (Switzerland), 12, Article 1541.
https://doi.org/10.3390/w12061541
[3]  Misigo, A.W.S. and Suzuki, S. (2018) Spatial-Temporal Sediment Hydrodynamics and Nutrient Loads in Nyanza Gulf, Characterizing Variation in Water Quality. World Journal of Engineering and Technology, 6, 98-115.
https://doi.org/10.4236/wjet.2018.62B009
[4]  Gatwaza, O.C., Cao, X. and Beckline, M. (2016) Impact of Urbanization on the Hydrological Cycle of Migina Catchment, Rwanda. Open Access Library Journal, 3, e2830.
https://doi.org/10.4236/oalib.1102830
[5]  Nruthya, K. and Srinivas, V.V. (2015) Evaluating Methods to Predict Streamflow at Ungauged Sites Using Regional Flow Duration Curves: A Case Study. Aquatic Procedia, 4, 641-648.
https://doi.org/10.1016/j.aqpro.2015.02.083
[6]  Asurza-Véliz, F.A. and Lavado-Casimiro, W.S. (2020) Regional Parameter Estimation of the SWAT Model: Methodology and Application to River Basins in the Peruvian Pacific Drainage. Water, 12, Article 3198.
https://doi.org/10.3390/w12113198
[7]  Ezemonye, M.N., Emeribe, C.N. and Anyadike, N.C.R. (2016) Estimating Stream Discharge of Aboine River Basin of Southeast Nigeria Using Modified Thornthwaite Climatic Water Balance Model. Journal of Applied Sciences and Environmental Management, 20, 760-768.
https://doi.org/10.4314/jasem.v20i3.30
[8]  Swain, J.B. and Patra, K.C. (2017) Streamflow Estimation in Ungauged Catchments Using Regionalization Techniques. Journal of Hydrology, 554, 420-433.
https://doi.org/10.1016/j.jhydrol.2017.08.054
[9]  Choubin, B., Solaimani, K., Rezanezhad, F., Roshan, M.H., Malekian, A. and Shamshirband, S. (2019) Streamflow Regionalization Using a Similarity Approach in Ungauged Basins: Application of the Geo-Environmental Signatures in the Karkheh River Basin, Iran. Catena, 182, Article ID: 104128.
https://doi.org/10.1016/j.catena.2019.104128
[10]  Oudin, L., Andréassian, V., Perrin, C., Michel, C. and Le Moine, N. (2008) Spatial Proximity, Physical Similarity, Regression and Ungaged Catchments: A Comparison of Regionalization Approaches Based on 913 French Catchments. Water Resources Research, 44, 1-15.
https://doi.org/10.1029/2007WR006240
[11]  Wagener, C.T., Blöschl, G., Goodrich, D.C., Gupta, H.V. and Sivapalan, M. (2012) A Synthesis Framework for Runoff Predictions in Ungauged Basins. In: Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A. and Savenije, H., Eds., Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales, Cambridge University Press, Cambridge, MA, 11-28.
https://doi.org/10.1017/CBO9781139235761.005
[12]  Sumioka, B.S., Kresch, D.L. and Kasnick, K.D. (2000) Magnitude and Frequency of Floods in Washington. U.S. Geological Survey Water-Resources Investigation.
[13]  Bisese, J. (1995) Methods for Estimating the Magnitude and Frequency of Peak Discharges of Rural, Unregulated Streams in Virginia. U.S. Geological Survey, Virginia.
https://pubs.usgs.gov/wri/wri944148/pdf/wrir_94-4148.pdf
[14]  Yu, P.-S. and Yang, T.-C. (2000) Using Synthetic Flow Duration Curves for Rainfall-Runoff Model Calibration at Ungauged Sites. Hydrological Processes, 14, 117-133.
https://doi.org/10.1002/(SICI)1099-1085(200001)14:1<117::AID-HYP914>3.0.CO;2-Q
[15]  Kim, D., Jung, I.W. and Chun, J.A. (2017) A Comparative Assessment of Rainfall-Runoff Modelling against Regional Flow Duration Curves for Ungauged Catchments. Hydrology and Earth System Sciences, 21, 5647-5661.
https://doi.org/10.5194/hess-21-5647-2017
[16]  Arsenault, R. and Brissette, F.P. (2014) Continuous Streamflow Prediction in Ungauged Basins: The Effects of Equifinality and Parameter Set Selection on Uncertainty in Regionalization Approaches. Water Resources Research, 50, 6135-6153.
https://doi.org/10.1002/2013WR014898
[17]  Poissant, D., Arsenault, R. and Brissette, F. (2017) Impact of Parameter Set Dimensionality and Calibration Procedures on Streamflow Prediction at Ungauged Catchments. Journal of Hydrology: Regional Studies, 12, 220-237.
https://doi.org/10.1016/j.ejrh.2017.05.005
[18]  Arsenault, R., Breton-Dufour, M., Poulin, A., Dallaire, G. and Romero-Lopez, R. (2019) Streamflow Prediction in Ungauged Basins: Analysis of Regionalization Methods in a Hydrologically Heterogeneous Region of Mexico. Hydrological Sciences Journal, 64, 1297-1311.
https://doi.org/10.1080/02626667.2019.1639716
[19]  Gubernick, R., Cenderelli, D., Bates, K., Johanson, D. and Jackson, S. (2008) Stream Simulation: An Ecological Approach to Providing Passage for Aquatic Organisms at Road-Stream Crossings, 646.
[20]  Yilmaz, M.U. and Onoz, B. (2017) A Blended Approach For Streamflow Estimation at Ungauged Sites in Turkey. 1st International Conference on Engineering Technology and Applied Sciences, Afyonkarahisar, 21-22 April 2016, Turkey.
[21]  Levin, S.B. and Farmer, W.H. (2020) Evaluation of Uncertainty Intervals for Daily, Statistically Derived Streamflow Estimates at Ungaged Basins across the Continental U.S. Water (Switzerland), 12, Article 1390.
https://doi.org/10.3390/w12051390
[22]  Samuel, J., Coulibaly, P. and Metcalfe, R.A. (2011) Estimation of Continuous Streamflow in Ontario Ungauged Basins: Comparison of Regionalization Methods. Journal of Hydrology Engineering, 16, 447-459.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000338
[23]  Abimbola, O.P., Wenninger, J., Venneker, R. and Mittelstet, A.R. (2017) The Assessment of Water Resources in Ungauged Catchments in Rwanda. Journal of Hydrology: Regional Studies, 13, 274-289.
https://doi.org/10.1016/j.ejrh.2017.09.001
[24]  Fan, F., Deng, Y., Hu, X. and Weng, Q. (2013) Estimating Composite Curve Number Using an Improved SCS-CN Method with Remotely Sensed Variables in Guangzhou, China. Remote Sensing, 5, 1425-1438.
https://doi.org/10.3390/rs5031425
[25]  Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H. and Kløve, B. (2015) A Continental-Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT Model. Journal of Hydrology, 524, 733-752.
https://doi.org/10.1016/j.jhydrol.2015.03.027
[26]  Bai, P., Liu, X. and Liu, C. (2018) Improving Hydrological Simulations by Incorporating GRACE Data for Model Calibration. Journal of Hydrology, 557, 291-304.
https://doi.org/10.1016/j.jhydrol.2017.12.025
[27]  Seiller, G., Anctil, F. and Perrin, C. (2012) Multimodel Evaluation of Twenty Lumped Hydrological Models under Contrasted Climate Conditions. Hydrology and Earth System Sciences, 16, 1171-1189.
https://doi.org/10.5194/hess-16-1171-2012
[28]  Patil, S. (2011) Information Transfer for Hydrologic Prediction in Ungauged River Basins. Ph.D. Thesis, Georgia Institute of Technology, Atlanta.
[29]  Razavi, T. and Coulibaly, P. (2013) Streamflow Prediction in Ungauged Basins: Review of Regionalization Methods. Journal of Hydrologic Engineering, 18, 958-975.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690
[30]  Strömqvist, J., Arheimer, B., Dahné, J., Donnelly, C. and Lindström, G. (2012) Prévisions des débits et des nutriments dans les bassins non jaugés: Mise en place et évaluation d’un modèle à l’échelle nationale. Hydrological Sciences Journal, 57, 229-247.
https://doi.org/10.1080/02626667.2011.637497
[31]  Hrachowitz, M., Savenije, H.H.G., Blöschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J.W., et al. (2013) A Decade of Predictions in Ungauged Basins (PUB)-A Review. Hydrological Sciences Journal, 58, 1198-1255.
https://doi.org/10.1080/02626667.2013.803183
[32]  Parajka, J., Merz, R. and Blöschl, G. (2005) A Comparison of Regionalisation Methods for Catchment Model Parameters. Hydrology and Earth System Sciences, 9, 157-171.
https://doi.org/10.5194/hess-9-157-2005
[33]  Arnold, J.G., Srinivasan, R., Muttiah, R.S. and Williams, J.R. (1998) Large Area Hydrologic Modeling and Assessment Part I: Model Development. Journal of the American Water Resources Association, 34, 73-89.
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
[34]  Srinivasan, R., Ramanarayanan, T., Arnold, J.G. and Bednarz, S. (1998) Large Area Hydrologic Modeling And Assessment Part II: Model Application. Journal of the American Water Resources Association, 34, 91-101.
https://doi.org/10.1111/j.1752-1688.1998.tb05962.x
[35]  Koycegiz, C. and Buyukyildiz, M. (2019) Calibration of SWAT and Two Data-Driven Models for a Data-Scarce Mountainous Headwater in Semi-Arid Konya Closed Basin. Water, 11, Article 147.
https://doi.org/10.3390/w11010147
[36]  Van Liew, M.W. and Mittelstet, A.R. (2018) Comparison of Three Regionalization Techniques for Predicting Streamflow in Ungaged Watersheds in Nebraska, USA Using SWAT Model. International Journal of Agricultural and Biological Engineering, 11, 110-119.
https://doi.org/10.25165/j.ijabe.20181103.3528
[37]  Pagliero, L., Bouraoui, F., Diels, J., Willems, P. and McIntyre, N. (2019) Investigating Regionalization Techniques for Large-Scale Hydrological Modeling. Journal of Hydrology, 570, 220-235.
https://doi.org/10.1016/j.jhydrol.2018.12.071
[38]  Mitsugi, Y., Vongthanasunthorn, N., Mishima, Y., Koga, K., et al. (1967) Long-Term Change of Water Quality in the Reservoir of the Isahaya Bay Reclamation Project. Lowland Technology International, 15, 21-28.
[39]  Ittisukananth, P., Koga, K. and Vongthanasunthorn, N. (2008) Study on Algal Growth in Isahaya Reservoir. Lowland Technology International, 10, 68-75.
[40]  Central Environment Council (2015) Report on Assessment of Impacts of Climate Change in Japan and Future Challenges.
https://www.env.go.jp/en/focus/docs/files/20150300-100.pdf.
[41]  Chaffe, P.L.B., Takara, K., Yamashiki, Y., Apip, Luo, P., Silva, R.V. and Nakakita, E. (2013) Cartographie des régions du Japon sensibles aux changements de la couverture nivale. Hydrological Sciences Journal, 58, 1718-1728.
https://doi.org/10.1080/02626667.2013.839874
[42]  Mehan, S., Neupane, R.P. and Kumar, S. (2017) Coupling of SUFI 2 and SWAT for Improving the Simulation of Streamflow in an Agricultural Watershed of South Dakota. Hydrology Current Research, 8, Article ID: 1000280.
https://doi.org/10.4172/2157-7587.1000280
[43]  Gitau, M.W. and Chaubey, I. (2010) Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds. Water (Switzerland), 2, 849-871.
https://doi.org/10.3390/w2040849
[44]  Fulford, J.M. and Sauer, V.B. (1986) Comparison of Velocity Interpolation Methods for Computing Open-Channel Discharge. Selected Papers in the Hydrologic Sciences. Geological Survey Water-Supply Paper, 2290, 139-144.
[45]  Krause, P., Boyle, D.P. and Bäse, F. (2005) Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Advances in Geosciences, 5, 89-97.
https://doi.org/10.5194/adgeo-5-89-2005
[46]  Muleta, M.K. (2012) Model Performance Sensitivity to Objective Function during Automated Calibrations. Journal of Hydrologic Engineering, 17, 756-767.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000497
[47]  Faramarzi, M., Srinivasan, R., Iravani, M., Bladon, K.D., Abbaspour, K.C., Zehnder, A.J.B. and Goss, G.G. (2015) Setting up a Hydrological Model of Alberta: Data Discrimination Analyses Prior to Calibration. Environmental Modelling & Software, 74, 48-65.
https://doi.org/10.1016/j.envsoft.2015.09.006
[48]  Sikorska, A.E., Del Giudice, D., Banasik, K. and Rieckermann, J. (2015) The Value of Streamflow Data in Improving TSS Predictions-Bayesian Multi-Objective Calibration. Journal of Hydrology, 530, 241-254.
https://doi.org/10.1016/j.jhydrol.2015.09.051
[49]  Massmann, C. (2020) Identification of Factors Influencing Hydrologic Model performance Using a Top-Down Approach in a Large Number of U.S. Catchments. Hydrological Processes, 34, 4-20.
https://doi.org/10.1002/hyp.13566
[50]  Bulygina, N., McIntyre, N. and Wheater, H. (2011) Bayesian Conditioning of a Rainfall-Runoff Model for Predicting Flows in Ungauged Catchments and under Land Use Changes. Water Resources Research, 47, 1-13.
https://doi.org/10.1029/2010WR009240
[51]  Monjardin, C.E.F., Uy, F.A.A. and Tan, F.J. (2017) Estimation of River Discharge at Ungauged Catchment Using GIS Map Correlation Method as Applied in Sta. Lucia River in Mauban, Quezon, Philippines. IOP Conference Series: Materials Science and Engineering, 216, Article ID: 012045.
https://doi.org/10.1088/1757-899X/216/1/012045
[52]  Parajka, J., Viglione, A., Rogger, M., Salinas, J.L., Sivapalan, M. and Blöschl, G. (2013) Comparative Assessment of Predictions in Ungauged Basins-Part 1: Runoff-Hydrograph Studies. Hydrology and Earth System Sciences, 17, 1783-1795.
https://doi.org/10.5194/hess-17-1783-2013
[53]  Loukas, A. and Vasiliades, L. (2014) Streamflow Simulation Methods for Ungauged and Poorly Gauged Watersheds. Natural Hazards and Earth System Sciences, 14, 1641-1661.
https://doi.org/10.5194/nhess-14-1641-2014
[54]  Rajib, M.A., Merwade, V. and Yu, Z. (2016) Multi-Objective Calibration of a Hydrologic Model Using Spatially Distributed Remotely Sensed/in-Situ Soil Moisture. Journal of Hydrology, 536, 192-207.
https://doi.org/10.1016/j.jhydrol.2016.02.037
[55]  Siderius, C., Biemans, H., Kashaigili, J.J. and Conway, D. (2018) Going Local: Evaluating and Regionalizing a Global Hydrological Model’S Simulation of River Flows in a Medium-Sized East African Basin. Journal of Hydrology: Regional Studies, 19, 349-364.
https://doi.org/10.1016/j.ejrh.2018.10.007
[56]  Kouchi, D.H., Esmaili, K., Faridhosseini, A., Sanaeinejad, S.H., Khalili, D. and Abbaspour, K.C. (2017) Sensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization Algorithms. Water (Switzerland), 9, Article 384.
https://doi.org/10.3390/w9060384
[57]  Bock, A.R., Farmer, W.H. and Hay, L.E. (2018) Quantifying Uncertainty in Simulated Streamflow and Runoff from a Continental-Scale Monthly Water Balance Model. Advances in Water Resources, 122, 166-175.
https://doi.org/10.1016/j.advwatres.2018.10.005
[58]  Pokorny, S., Stadnyk, T.A., Ali, G., Lilhare, R., Déry S.J. and Koenig, K. (2021) Cumulative Effects of Uncertainty on Simulated Streamflow in a Hydrologic Modeling Environment. Elementa: Science of the Anthropocene, 9, Article 431.
https://doi.org/10.1525/elementa.431
[59]  Hamilton, A.S. and Moore, R.D. (2012) Quantifying Uncertainty in Streamflow Records. Canadian Water Resources Journal, 37, 3-21.
https://doi.org/10.4296/cwrj3701865
[60]  Lee, K., Ho, H.-C., Marian, M. and Wu, C.-H. (2014) Uncertainty in Open Channel Discharge Measurements Acquired with StreamPro ADCP. Journal of Hydrology, 509, 101-114.
https://doi.org/10.1016/j.jhydrol.2013.11.031
[61]  Huang, H. (2012) Uncertainty Model for In Situ Quality Control of Stationary ADCP Open-Channel Discharge Measurement. Journal of Hydraulic Engineering, 138, 4-12.
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000492
[62]  WMO (2017) Guidelines for the Assessment of Uncertainty for Hydrometric Measurement.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133