The majority of the population of Burkina Faso lives from agriculture and therefore depends on the land. The main objective of this study is to assess the quality of the soils in the area linked to artisanal mining activities. The methodology adopted consisted in sampling and characterizing the main types of soil. In order to assess the level of soil pollution by artisanal mining, parameters such as the geo-accumulation index (Igeo) and the contamination factor (CF) are calculated. A prediction of acid mine drainage (AMD) was also carried out on samples of mine tailings which are potential sources of pollution of these soils. The results obtained show that the soils in Yimiougou are of nil to low agronomic interest. The Igeo shows that for lead, copper, zinc and arsenic the levels found in the different morphological units are partly attributable to human action and specifically artisanal mining. The values of the contamination factor indicate contamination. Cobalt presents the lowest contamination. For cadmium, the different types of soil are moderately contaminated except for the FITLC type, which has a CF value of 0.50, therefore synonymous with low or absent contamination. The various morphological units studied are very heavily contaminated with zinc, copper, lead and arsenic. The pH and conductivity values indicate that the mine tailings samples are non-acidogenic, therefore not yet oxidized. As for the sulphide contents, they show that only samples S17, S22, S23 and S24 present values that are strictly above the threshold (0.3%) and therefore potentially acid-generating. The comparative study of the acid potential (AP) and the neutralization potential (NP) reveals that the neutralization potentials of the different samples are clearly higher than the acid potentials even for the samples which present a proven acidification potential (S17, S22, S23 and S24). These results show that the mine tailings have the natural capacity to neutralize any possible mine drainage, given the presence of acid-eating minerals such as the carbonates associated with the mineralization.
References
[1]
nsittut National de la Statistique et de la Démographie (2017) Enquête nationale sur le secteur de l’orpaillage. Ouagadougou, 9 p.
[2]
Berger, M., Belem, P.C., Dakuo, D. and Hien, V. (1987) Le maintien de la fertilité des sols dans l’ouest du Burkina Faso et la nécessité de l’association agriculture-élevage. Coton et Fibres Tropical, 42, 201-210.
[3]
Brady, C. and Weil, R. (2008) The Nature and Properties of Soils. 13th Edition, Prentice Hall, London, 662-710.
[4]
Muller, G. (1969) Index of Geo-Accumulation in Sediments of the Rhine River. Geological Journal, 2, 108-118.
[5]
Krzysztof, L., Wiechula, D. and Korns, I. (2003) Metal Contamination of Farming Soils Affected by Industry. Environment International, 30, 159-165. https://doi.org/10.1016/S0160-4120(03)00157-0
[6]
Stoffers, P., Glasby, G., Wilson, C., Davis, K. and Watter, P. (1986) Heavy Metal Pollution in Wellington Harbor. New Zealand Journal of Marine and Freshwater Research, 20, 495-512. https://doi.org/10.1080/00288330.1986.9516169
[7]
Abrahim, G.M.S. and Parker, R.J. (2008) Assessment of Heavy Metal Enrichment Factors and the Degree of Contamination in Marine Sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 133, 227-238. https://doi.org/10.1007/s10661-007-9678-2
[8]
Leila, S., Okk, M.H., Mehennaoui, F.Z. and Mehhhhhoui, S. (2014) Utilisation d’indices pour l’évaluation de la qualité des sédiments: Cas du bassin Boumerzoug (Algérie). European Scientific Journal, 10, 336-346.
[9]
Taylor, S.R. and Mclennan, S.M. (1995) The Geochemical Evolution of the Continental Crust. Reviews in Geophysics, 33, 241-265. https://doi.org/10.1029/95RG00262
[10]
Hakanson, L. (1980) Ecological Risk Index for Aquatic Pollution Control, a Sedimentological Approach. Water Research, 14, 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8
[11]
Shotyk, W., Blaser, P., Grunig, A. and Cheburkin, A.K. (2000) A New Approach for Quantifying Cumulative, Anthropogenic, Atmospheric Lead Deposition Using Peat Cores from Bogs: Pb in Eight Swiss Peat Bog Profiles. Science of the Total Environment, 249, 281-295. https://doi.org/10.1016/S0048-9697(99)00523-9
[12]
Aranguren, M.M.S. (2008) Contamination des métaux lourds des eaux de surface et des sédiments du Val de Milluni (Andes boliviennes) par les déchets miniers, approches géochimiques, minéralogiques et hydrochimiques. Thèse de Doctorat, Université de Toulouse, Toulouse, 489 p.
[13]
Rubio, B., Nombela, M.A. and Vilas, F. (2000) Geochemistry of Major and Trace Elements in Sediments of the Ria de Vigo (NW Spain): An Assessment of Metal Pollution. Marine Pollution Bulletin, 40, 968-980. https://doi.org/10.1016/S0025-326X(00)00039-4
[14]
Gäbler, H.E. (1997) Mobility of Heavy Metals as a Function of pH of Samples from an Overbank Sediment Profile Contamined by Mining Activities. Journal of Geochemical Exploration, 58, 185-194. https://doi.org/10.1016/S0375-6742(96)00061-1
[15]
Paulson, A.J. and Baliestri, L. (1999) Modeling Removal of Cd, Cu, Pb, and Zn in Acidic Groundwater during Neutralization by Ambient Surface Waters and Groundwaters. Environmental Science and Technology, 33, 3850-3856. https://doi.org/10.1021/es9900454
[16]
Bril, H. and Floc’h, J.P. (2001) Le devenir des métaux provenant des anciennes mines: L’exemple du Massif Central Français. Géologues, 130-131, 233-241.
[17]
Courtin-Nomade, A., Bril, H., Neel, C. and Lenain, J.-F. (2003) Arsenic in Iron Cements Developed within Tailings of a Former Metalliferous Mine-Enguiales, Aveyron, France. Applied Geochemistry, 18, 395-408. https://doi.org/10.1016/S0883-2927(02)00098-7
[18]
Galvez-Cloutier, R. and Lefrançois, P.J. (2005) Les sols contaminés par des métaux lourds: Distribution géochimique et techniques de restauration (Première partie). Vecteur Environnement, 38, 9 p.
[19]
Galvez-Cloutier, R. and Lefrançois, P.J. (2005) Les sols contaminés par des métaux lourds: Distribution géochimique et techniques de restauration (Deuxième partie). Vecteur Environnement, 38, 7 p.
[20]
Qin, G., Niu, Z., Yu, J., Li, Z., Ma, J. and Xiang, P. (2021) Soil Heavy Metal Pollution and Food Safety in China: Effects, Sources and Removing Technology. Chemosphere, 267, Article ID: 129205. https://doi.org/10.1016/j.chemosphere.2020.129205
[21]
Kagambega, N., Sawadogo, S. and Gordio, A. (2014) High Arsenic Enrichment in Water in Sols from Sambayourou Watershed-Burkina Faso (West Africa). International Journal of Environmental Monitoring and Analysis, 2, 6-12.
[22]
Kagambega, N., Sawadogo, S., Bamba, O., Zombré, P. and Galvez, R. (2014) Acid Mine Drainage and Heavy Metals Contamination of Surface Water and Soil in South-West Burkina Faso-West Africa. International Journal of Multidisciplinary Academic Research, 2, 9-19.
[23]
Ouedraogo, B., Kagambega, N., Ouedraogo, M. and Zoungrana, D. (2018) Méthodes prédictives géochimiques statiques et plan de fermeture de mine. Cas de la mine d’or de Youga—Burkina Faso. Journal des sciences, 18, 13-23.
[24]
Collon, P. (2003) Evolution de la qualité de l’eau dans les mines abandonnées du bassin ferrifère lorrain. De l’expérimentation en laboratoire à la modélisation in situ. Thèse de Doctorat de l’Institut National Polytechnique de Lorraine.
[25]
Brunet, J.F. and Coste, B. (2000) Bibliographie préliminaire à la gestion des DMA de Rosia Poieni (Roumanie). Bureau de Recherches Géologiques et Minières (BRGM) rp50626-fr.
[26]
Miller, S.D., Jeffery, J.J. and Wong, J.W.C. (1991) Use and Misuse of the Acid Base Account for “AMD” Prediction. Proceedings of the 2nd International Conference on the Abatement of Acidic Drainage, Montreal, 16-18 September 1991, 489-506.