全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantization of the Kinetic Energy of Deterministic Chaos

DOI: 10.4236/ajcm.2023.131001, PP. 1-81

Keywords: The Navier-Stokes Equations, Quantization of Kinetic Energy, Deterministic Chaos, Elementary Pulson of Propagation, Internal Elementary Oscillon, Diagonal Elementary Oscillon, External Elementary Oscillon, Wave Pulson of Propagation, Internal Wave Oscillon, Diagonal Wave Oscillon, External Wave Oscillon, Group Pulson of Propagation, Internal Group Oscillon, Diagonal Group Oscillon, External Group Oscillon, Energy Pulson of Propagation, Internal Energy Oscillon, Diagonal Energy Oscillon, External Energy Oscillon, Cumulative Energy Pulson

Full-Text   Cite this paper   Add to My Lib

Abstract:

In previous works, the theoretical and experimental deterministic scalar kinematic structures, the theoretical and experimental deterministic vector kinematic structures, the theoretical and experimental deterministic scalar dynamic structures, and the theoretical and experimental deterministic vector dynamic structures have been developed to compute the exact solution for deterministic chaos of the exponential pulsons and oscillons that is governed by the nonstationary three-dimensional Navier-Stokes equations. To explore properties of the kinetic energy, rectangular, diagonal, and triangular summations of a matrix of the kinetic energy and general terms of various sums have been used in the current paper to develop quantization of the kinetic energy of deterministic chaos. Nested structures of a cumulative energy pulson, an energy pulson of propagation, an internal energy oscillon, a diagonal energy oscillon, and an external energy oscillon have been established. In turn, the energy pulsons and oscillons include group pulsons of propagation, internal group oscillons, diagonal group oscillons, and external group oscillons. Sequentially, the group pulsons and oscillons contain wave pulsons of propagation, internal wave oscillons, diagonal wave oscillons, and external wave oscillons. Consecutively, the wave pulsons and oscillons are composed of elementary pulsons of propagation, internal elementary oscillons, diagonal elementary oscillons, and external elementary oscillons. Topology, periodicity, and integral properties of the exponential pulsons and oscillons have been studied using the novel method of the inhomogeneous Fourier expansions via eigenfunctions in coordinates and time. Symbolic computations of the exact expansions have been performed using the experimental and theoretical programming in Maple. Results of the symbolic computations have been justified by probe visualizations.

References

[1]  Miroshnikov, V.A. (2014) Conservative Interaction of N Internal Waves in Three Dimensions. American Journal of Computational Mathematics, 4, 329-356.
https://doi.org/10.4236/ajcm.2014.44029
[2]  Miroshnikov, V.A. (2017) Harmonic Wave Systems: Partial Differential Equations of the Helmholtz Decomposition. Scientific Research Publishing, USA.
http://www.scirp.org/book/DetailedInforOfABook.aspx?bookID=2494
[3]  Miroshnikov, V.A. (2020) Deterministic Chaos of Exponential Oscillons and Pulsons. American Journal of Computational Mathematics, 10, 43-72.
https://doi.org/10.4236/ajcm.2020.101004
[4]  Miroshnikov, V.A. (2002) The Boussinesq-Rayleigh Approximation for Rotational Solitary Waves on Shallow Water with Uniform Vorticity. Journal of Fluid Mechanics, 456, 1-32.
https://doi.org/10.1017/S0022112001007352
[5]  Miroshnikov, V.A. (1996) The Finite-Amplitude Solitary Wave on a Stream with Linear Vorticity. European Journal of Mechanics, B/Fluids, 15, 395-411.
[6]  Miroshnikov, V.A. (1995) Solitary Wave on the Surface of a Shear Stream in Crossed Electric and Magnetic Fields: The Formation of a Single Vortex. Magnetohydrodynamics, 31, 149-165.
http://mhd.sal.lv/contents/1995/2/MG.31.2.5.R.html
[7]  Miroshnikov, V.A. (2014) Interaction of Two Pulsatory Waves of the Korteweg-de Vries Equation in a Zigzag Hyperbolic Structure. American Journal of Computational Mathematics, 4, No. 3, 254-270.
https://doi.org/10.4236/ajcm.2014.43022
[8]  Infeld, E. and Rowlands, G. (2000) Nonlinear Waves, Solitons and Chaos. 2nd Edition, Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139171281
[9]  Sagdeev, R.Z., Usikov, D.A. and Zaslavsky, G.M. (1988) Nonlinear Physics: From the Pendulum to Turbulence and Chaos. Harwood Academic Publishers, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133