全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Management of a Complex Portfolio of Assets with Stochastic Drifts and Volatilities

DOI: 10.4236/ojs.2022.126047, PP. 827-838

Keywords: Value at Risk, Expected Shortfall, Stochastic Process, Interest Rate

Full-Text   Cite this paper   Add to My Lib

Abstract:

In financial analysis risk quantification is essential for efficient portfolio management in a stochastic framework. In this paper we study the value at risk, the expected shortfall, marginal expected shortfall and value at risk, incremental value at risk and expected shortfall, the marginal and discrete marginal contributions of a portfolio. Each asset in the portfolio is characterized by a trend, a volatility and a price following a three-dimensional diffusion process. The interest rate of each asset evolves according to the Hull and White model. Furthermore, we propose the optimization of this portfolio according to the value at risk model.

References

[1]  Abba Mallam, H., Barro, D., Wendkouni, Y. and Bisso, S. (2021) Pricing Multivariate European Equity Option Using Gaussians Mixture Distributions and EVT-Based Copulas. International Journal of Mathematics and Mathematical Sciences, 2021, Article ID: 7648093.
https://doi.org/10.1155/2021/7648093
[2]  El Karoui, N. and Gobet, E. (2011) Les outils stochastiques des marchés financiers ditions de l’cole Polytechnique—Février.
[3]  Ollmer, H. and Schied, A. (2002) Stochastic Finance. An Introduction in Discrete-Time. Studies in Mathematics, de Gruyter, Berlin.
[4]  Gundel, A. (2005) Robust Utility Maximization for Complete and Incomplete Market Models. Finance and Stochastics, 9, 151-176.
https://doi.org/10.1007/s00780-004-0148-1
[5]  Barrieu, P. and El Karoui, N. (2004) Optimal Design of Derivatives under Dynamic Risk Measures. In: Yin, G. and Zhang, Q., Eds., Contemporary Mathematics, Vol. 351.
[6]  Yang, Y., Zhu, Y. and Zhao, X. (2020) Portfolio Research Based on Mean-Realized Variance-CVaR and Random Matrix Theory under High-Frequency Data. Journal of Financial Risk Management, 9, 480-493.
https://doi.org/10.4236/jfrm.2020.94026
[7]  Mbigili, L., Mataramvura, S. and Charles, W. (2020) Optimal Portfolio Management When Stocks Are Driven by Mean Reverting Processes. Journal of Mathematical Finance, 10, 10-26.
https://doi.org/10.4236/jmf.2020.101002
[8]  Roncalli, T. (2009) Gestion des Risques Multiples, Collection Finance, 2e Edition.
[9]  Zhu, S.S., et al. (2010) Portfolio Selection with Marginal Risk Control. The Journal of Computational Finance, 14, 3-28.
https://doi.org/10.21314/JCF.2010.213
[10]  Khodamoradi, T., Salahi, M. and Najafi, A.R. (2020) Portfolio Optimization Model with and without Options under Additional Constraints. Mathematical Problems in Engineering, 2020, Article ID: 8862435.
https://doi.org/10.1155/2020/8862435
[11]  Clauss, P. (2011) Gestion de portefeuille: Une approche quantitative. Dunod, Paris.
[12]  Aftation, F. (2018) La nouvelle finance et la gestion de portefeuilles. Economica.
[13]  Jacquillat, B., Solnik, B. and Prignon, C. (2009) Marchés financiers, gestion des portefeuilles et des risqué. Dunod, Paris.
[14]  Harrison, J.M. and Liska, S.P. (1981) Martingales and Stochastiques Integrals in the Theory of Continuous Trading Stochastic Processes and Their Applications.
[15]  Rockafellar, R.T. and Uryasev, S. (2000) Optimization of Conditional Value-at-Risk. Journal of Risk, 2, 21-41.
https://doi.org/10.2139/ssrn.267256
[16]  Le Gall, J.-F. (2013) Mouvement brownien, martingales et calcul stochastique. Springer, Heidelberg.
[17]  Lamberton, D. and Lapeyre, B. (2012) Introduction au calcul stochastique appliqué la finance. 3 édition.
[18]  Martnez, F., Martnez-Vidal, I. and Paredes, S. (2019) Conformable Euler’s Theorem on Homogeneous Functions. Computational and Mathematical Methods, 1, e1048.
[19]  Loyara, V.Y.B. and Barro, D. (2019) Value-at-Risk Modeling with Conditional Copulas in Euclidean Space Framework. European Journal of Pure and Applied Mathematics, 12, 194-207.
https://doi.org/10.29020/nybg.ejpam.v12i1.3347
[20]  Yameogo, W. and Barro, D. (2021) Modeling the Dependence of Losses of a Financial Portfolio Using Nested Archimedean Copulas. International Journal of Mathematics and Mathematical Sciences, 2021, Article ID: 4651044.
https://doi.org/10.1155/2021/4651044
[21]  Dowd, K. (1999) Beyond Value at Risk: The New Science of Risk Management (Frontiers in Finance Series). Wiley, Hoboken.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133