全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Mechanisms of SAA/TLR4 Inducing Angiogenesis in Rheumatoid Arthritis through NETs Formation

DOI: 10.4236/oji.2022.124007, PP. 98-121

Keywords: Angiogenesis, Neutrophil Extracellular Traps, Rheumatoid Arthritis, Serum Amyloid A, Toll-Like Receptor 4

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective: Rheumatoid arthritis (RA) is an autoimmune disease in which angiogenesis represents a critical early event of synovial inflammation. The present study aimed to reveal the potential molecular mechanisms of SAA/TLR4 induction of angiogenesis through NETs in RA. Materials and methods: Firstly, immunohistochemistry and immunofluorescence were used to determinate TLR4 and NETs expression in synovial tissue, respectively. ELISA was used to detect the content of SAA, MPO and NE in serum and synovial fluid of patients. DNA quantification was done by fluorescence. DNA fluorescence staining was used to compare NETs formation in RA and HC sera, and to investigate the mechanism of NETs formation induced by SAA stimulation. PicoGreen DNA testing was used to characterize the DNA in the supernatants. Also, DNA fluorescence staining to explore whether NETs formation induced by SAA was dependent or independent on NADPH oxidase pathway. MTT assay, Wound healing assay, Tube formation assay were performed to analyze human veins umbilical cells (HUVECs) proliferation, migration, and tube vessels formation, respectively under NETs or NETs + DNase stimulants. Results: Firstly, we demonstrated that TLR4 was predominantly and widely expressed in synovial tissues with elevated serum levels of SAA, compared to osteoarthritis (OA) patients, and the similar results were observed for NETs formation. Afterwards, in a series of in vitro experiments, we reported an increased MPO and NE levels, and a relatively decreased DNA level in the sera of RA patients. Set apart, the levels of MPO and NE in RA were correlated to the disease activity. Moreover, an increased spontaneous NETs formation was observed in RA patients, enhanced under SAA stimulation and regulated by TLR4 activation. And the total DNA expressed in RA patients was partly composed of NET-DNA. Also, SAA induced NETs formation dependent on NADPH pathway. Finally, our results indicated that extracted SAA-induced NETs promoted endothelial cells (ECs) migration, proliferation, and vascular tube formation. Conclusion: Our current study highlighted the role of SAA/TLR4 interaction in the induction of angiogenesis through formed NETs. Therefore, this study offers new perspectives in the understanding of RA

References

[1]  Smolen, J.S., Aletaha, D. and McInnes, I.B. (2016) Rheumatoid Arthritis. Lancet, 388, 2023-2038.
https://doi.org/10.1016/S0140-6736(16)30173-8
[2]  Aletaha, D., Neogi, T., Silman, A.J., Funovits, J., Felson, D.T., Bingham III, C.O., et al. (2010) 2010 Rheumatoid Arthritis Classification Criteria: An American College of Rheumatology/European League against Rheumatism Collaborative Initiative. Arthritis & Rheumatology, 62, 2569-2581.
https://doi.org/10.1002/art.27584
[3]  Szekanecz, Z., Besenyei, T., Szentpetery, A. and Koch, A.E. (2010) Angiogenesis and Vasculogenesis in Rheumatoid Arthritis. Current Opinion in Rheumatology, 22, 299-306.
https://doi.org/10.1097/BOR.0b013e328337c95a
[4]  Lv, M., Xia, Y.F., Li, B., Liu, H., Pan, J.Y., Li, B.B., et al. (2016) Serum Amyloid A Stimulates Vascular Endothelial Growth Factor Receptor 2 Expression and Angiogenesis. Journal of Physiology and Biochemistry, 72, 71-81.
https://doi.org/10.1007/s13105-015-0462-4
[5]  Sack Jr., G.H. (2018) Serum Amyloid A—A Review. Molecular Medicine, 24, Article No. 46.
https://doi.org/10.1186/s10020-018-0047-0
[6]  Soric Hosman, I., Kos, I. and Lamot, L. (2020) Serum Amyloid A in Inflammatory Rheumatic Diseases: A Compendious Review of a Renowned Biomarker. Frontiers in Immunology, 11, Article 631299.
https://doi.org/10.3389/fimmu.2020.631299
[7]  Lee, M.S., Yoo, S.A., Cho, C.S., Suh, P.G., Kim, W.U. and Ryu, S.H. (2006) Serum Amyloid A Binding to Formyl Peptide Receptor-Like 1 Induces Synovial Hyperplasia and Angiogenesis. The Journal of Immunology, 177, 5585-5594.
https://doi.org/10.4049/jimmunol.177.8.5585
[8]  Hong, C., Shen, C., Ding, H., Huang, S., Mu, Y., Su, H., et al. (2015) An Involvement of SR-B1 Mediated p38 MAPK Signaling Pathway in Serum Amyloid A-Induced Angiogenesis in Rheumatoid Arthritis. Molecular Immunology, 66, 340-345.
https://doi.org/10.1016/j.molimm.2015.03.254
[9]  Radstake, T.R., Roelofs, M.F., Jenniskens, Y.M., Oppers-Walgreen, B., van Riel, P.L., Barrera, P., et al. (2004) Expression of toll-like receptors 2 and 4 in Rheumatoid Synovial Tissue and Regulation by Proinflammatory Cytokines Interleukin-12 and Interleukin-18 via Interferon-γ. Arthritis & Rheumatology, 50, 3856-3865.
https://doi.org/10.1002/art.20678
[10]  Prince, L.R., Whyte, M.K., Sabroe, I. and Parker, L.C. (2011) The Role of TLRs in Neutrophil Activation. Current Opinion in Pharmacology, 11, 397-403.
https://doi.org/10.1016/j.coph.2011.06.007
[11]  Lee, K.H., Kronbichler, A., Park, D.D., Park, Y., Moon, H., Kim, H., et al. (2017) Neutrophil Extracellular Traps (NETs) in Autoimmune Diseases: A Comprehensive Review. Autoimmunity Reviews, 16, 1160-1173.
https://doi.org/10.1016/j.autrev.2017.09.012
[12]  Song, W., Ye, J., Pan, N., Tan, C. and Herrmann, M. (2020) Neutrophil Extracellular Traps Tied to Rheumatoid Arthritis: Points to Ponder. Frontiers in Immunology, 11, Article 578129.
https://doi.org/10.3389/fimmu.2020.578129
[13]  Wang, W., Peng, W. and Ning, X. (2017) Increased Levels of Neutrophil Extracellular Trap Remnants in the Serum of Patients with Rheumatoid Arthritis. International Journal of Rheumatic Diseases, 21, 415-421.
https://doi.org/10.1111/1756-185X.13226
[14]  Perez-Sanchez, C., Ruiz-Limon, P., Aguirre, M.A., Jimenez-Gomez, Y., Arias-de la Rosa, I., Abalos-Aguilera, M.C., et al. (2017) Diagnostic Potential of NETosis-Derived Products for Disease Activity, Atherosclerosis and Therapeutic Effectiveness in Rheumatoid Arthritis Patients. Journal of Autoimmunity, 82, 31-40.
https://doi.org/10.1016/j.jaut.2017.04.007
[15]  Khandpur, R., Carmona-Rivera, C., Vivekanandan-Giri, A., Gizinski, A., Yalavarthi, S., Knight, J.S., et al. (2013) NETs Are a Source of Citrullinated Autoantigens and Stimulate Inflammatory Responses in Rheumatoid Arthritis. Science Translational Medicine, 5, 178ra40.
https://doi.org/10.1126/scitranslmed.3005580
[16]  Carmona-Rivera, C., Zhao, W., Yalavarthi, S. and Kaplan, M.J. (2015) Neutrophil Extracellular Traps Induce Endothelial Dysfunction in Systemic Lupus Erythematosus through the Activation of Matrix Metalloproteinase-2. Annals of the Rheumatic Diseases, 74, 1417-1424.
https://doi.org/10.1136/annrheumdis-2013-204837
[17]  Aldabbous, L., Abdul-Salam, V., McKinnon, T., Duluc, L., Pepke-Zaba, J., Southwood, M., et al. (2016) Neutrophil Extracellular Traps Promote Angiogenesis: Evidence from Vascular Pathology in Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 2078-2087.
https://doi.org/10.1161/ATVBAHA.116.307634
[18]  Fuchs, T.A., Abed, U., Goosmann, C., Hurwitz, R., Schulze, I., Wahn, V., et al. (2007) Novel Cell Death Program Leads to Neutrophil Extracellular Traps. Journal of Cell Biology, 176, 231-241.
https://doi.org/10.1083/jcb.200606027
[19]  Kessenbrock, K., Krumbholz, M., Schonermarck, U., Back, W., Gross, W.L., Werb, Z., et al. (2009) Netting Neutrophils in Autoimmune Small-Vessel Vasculitis. Nature Medicine, 15, 623-625.
https://doi.org/10.1038/nm.1959
[20]  Garcia-Romo, G.S., Caielli, S., Vega, B., Connolly, J., Allantaz, F., Xu, Z., et al. (2011) Netting Neutrophils Are Major Inducers of Type I IFN Production in Pediatric Systemic Lupus Erythematosus. Science Translational Medicine, 3, 73ra20.
https://doi.org/10.1126/scitranslmed.3001201
[21]  Lande, R., Ganguly, D., Facchinetti, V., Frasca, L., Conrad, C., Gregorio, J., et al. (2011) Neutrophils Activate Plasmacytoid Dendritic Cells by Releasing Self-DNA-Peptide Complexes in systemic Lupus Erythematosus. Science Translational Medicine, 3, 73ra19.
https://doi.org/10.1126/scitranslmed.3001180
[22]  Hasler, P., Giaglis, S. and Hahn, S. (2016) Neutrophil Extracellular Traps in Health and Disease. Swiss Medical Weekly, 146, w14352.
https://doi.org/10.4414/smw.2016.14352
[23]  Neeli, I., Dwivedi, N., Khan, S. and Radic, M. (2009) Regulation of Extracellular Chromatin Release from Neutrophils. Journal of Innate Immunity, 1, 194-201.
https://doi.org/10.1159/000206974
[24]  Lim, M.B., Kuiper, J.W., Katchky, A., Goldberg, H. and Glogauer, M. (2011) Rac2 Is Required for the Formation of Neutrophil Extracellular Traps. Journal of Leukocyte Biology, 90, 771-776.
https://doi.org/10.1189/jlb.1010549
[25]  Abdollahi-Roodsaz, S., Joosten, L.A., Roelofs, M.F., Radstake, T.R., Matera, G., Popa, C., et al. (2007) Inhibition of Toll-Like Receptor 4 Breaks the Inflammatory Loop in Autoimmune Destructive Arthritis. Arthritis & Rheumatology, 56, 2957-2967.
https://doi.org/10.1002/art.22848
[26]  Murad, S. (2014) Toll-Like Receptor 4 in Inflammation and Angiogenesis: A Double-Edged Sword. Frontiers in Immunology, 5, Article 313.
https://doi.org/10.3389/fimmu.2014.00313
[27]  Li, X., Xu, T., Wang, Y., Huang, C. and Li, J. (2014) Toll-Like Receptor-4 Signaling: A New Potential Therapeutic Pathway for Rheumatoid Arthritis. Rheumatology International, 34, 1613-1614.
https://doi.org/10.1007/s00296-013-2890-1
[28]  Funchal, G.A., Jaeger, N., Czepielewski, R.S., Machado, M.S., Muraro, S.P., Stein, R.T., et al. (2015) Respiratory Syncytial Virus Fusion Protein Promotes TLR-4-Dependent Neutrophil Extracellular Trap Formation by Human Neutrophils. PLOS ONE, 10, e0124082.
https://doi.org/10.1371/journal.pone.0124082
[29]  Sebina, I. and Phipps, S. (2020) The Contribution of Neutrophils to the Pathogenesis of RSV Bronchiolitis. Viruses, 12, Article No. 808.
https://doi.org/10.3390/v12080808
[30]  Tadie, J.M., Bae, H.B., Jiang, S., Park, D.W., Bell, C.P., Yang, H., et al. (2013) HMGB1 Promotes Neutrophil Extracellular Trap Formation through Interactions with Toll-Like Receptor 4. American Journal of Physiology—Lung Cellular and Molecular Physiology, 304, L342-L349.
https://doi.org/10.1152/ajplung.00151.2012
[31]  Khan, M.A., Farahvash, A., Douda, D.N., Licht, J.C., Grasemann, H., Sweezey, N., et al. (2017) JNK Activation Turns on LPS-and Gram-Negative Bacteria-Induced NADPH Oxidase-Dependent Suicidal NETosis. Scientific Reports, 7, Article No. 3409.
https://doi.org/10.1038/s41598-017-03257-z
[32]  Sandri, S., Rodriguez, D., Gomes, E., Monteiro, H.P., Russo, M. and Campa, A. (2008) Is Serum Amyloid A an Endogenous TLR4 Agonist? Journal of Leukocyte Biology, 83, 1174-1180.
https://doi.org/10.1189/jlb.0407203
[33]  Ebert, R., Benisch, P., Krug, M., Zeck, S., Meissner-Weigl, J., Steinert, A., et al. (2015) Acute Phase Serum Amyloid A Induces Proinflammatory Cytokines and Mineralization via Toll-Like Receptor 4 in Mesenchymal Stem Cells. Stem Cell Research, 15, 231-239.
https://doi.org/10.1016/j.scr.2015.06.008
[34]  Hirai, K., Furusho, H., Kawashima, N., Xu, S., de Beer, M.C., Battaglino, R., et al. (2019) Serum Amyloid A Contributes to Chronic Apical Periodontitis via TLR2 and TLR4. Journal of Dental Research, 98, 117-125.
https://doi.org/10.1177/0022034518796456
[35]  Arnett, F.C., Edworthy, S.M., Bloch, D.A., McShane, D.J., Fries, J.F., Cooper, N.S., et al. (1988) The American Rheumatism Association 1987 Revised Criteria for the Classification of Rheumatoid Arthritis. Arthritis & Rheumatism, 31, 315-324.
https://doi.org/10.1002/art.1780310302
[36]  Yang, H., Biermann, M.H., Brauner, J.M., Liu, Y., Zhao, Y. and Herrmann, M. (2016) New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation. Frontiers in Immunology, 7, Article 302.
https://doi.org/10.3389/fimmu.2016.00302
[37]  Papayannopoulos, V., Metzler, K.D., Hakkim, A. and Zychlinsky, A. (2010) Neutrophil Elastase and Myeloperoxidase Regulate the Formation of Neutrophil Extracellular Traps. Journal of Cell Biology, 191, 677-691.
https://doi.org/10.1083/jcb.201006052
[38]  Ospelt, C., Brentano, F., Rengel, Y., Stanczyk, J., Kolling, C., Tak, P.P., et al. (2008) Overexpression of Toll-Like Receptors 3 and 4 in Synovial Tissue from patients with Early Rheumatoid Arthritis: Toll-Like Receptor Expression in Early and Longstanding Arthritis. Arthritis & Rheumatism, 58, 3684-3692.
https://doi.org/10.1002/art.24140
[39]  Shen, C., Sun, X.G., Liu, N., Mu, Y., Hong, C.C., Wei, W., et al. (2015) Increased Serum Amyloid A and Its Association with Autoantibodies, Acute Phase Reactants and Disease Activity in Patients with Rheumatoid Arthritis. Molecular Medicine Reports, 11, 1528-1534.
https://doi.org/10.3892/mmr.2014.2804
[40]  Malech, H.L., Deleo, F.R. and Quinn, M.T. (2014) The Role of Neutrophils in the Immune System: An Overview. In: Quinn, M. and DeLeo, F., Eds., Neutrophil Methods and Protocols. Methods in Molecular Biology, Vol. 1124, Humana Press, Totowa, 3-10.
https://doi.org/10.1074/mcp.M500143-MCP200
[41]  Lominadze, G., Powell, D.W., Luerman, G.C., Link, A.J., Ward, R.A. and McLeish, K.R. (2005) Proteomic Analysis of Human Neutrophil Granules. Molecular & Cellular Proteomics, 4, 1503-1521.
https://doi.org/10.1074/mcp.M500143-MCP200
[42]  Sur Chowdhury, C., Giaglis, S., Walker, U.A., Buser, A., Hahn, S. and Hasler, P. (2014) Enhanced Neutrophil Extracellular Trap Generation in Rheumatoid Arthritis: Analysis of Underlying Signal Transduction Pathways and Potential Diagnostic Utility. Arthritis Research & Therapy, 16, Article No. R122.
https://doi.org/10.1186/ar4579
[43]  Dunaeva, M., Buddingh, B.C., Toes, R.E., Luime, J.J., Lubberts, E. and Pruijn, G.J. (2015) Decreased Serum Cell-Free DNA Levels in Rheumatoid Arthritis. Autoimmunity Highlights, 6, 23-30.
https://doi.org/10.1007/s13317-015-0066-6
[44]  Zhong, X.Y., von Muhlenen, I., Li, Y., Kang, A., Gupta, A.K., Tyndall, A., et al. (2007) Increased Concentrations of Antibody-Bound Circulatory Cell-Free DNA in Rheumatoid Arthritis. Clinical Chemistry, 53, 1609-1614.
https://doi.org/10.1373/clinchem.2006.084509
[45]  Bartoloni, E., Ludovini, V., Alunno, A., Pistola, L., Bistoni, O., Crino, L., et al. (2011) Increased Levels of Circulating DNA in Patients with Systemic Autoimmune Diseases: A Possible Marker of Disease Activity in Sjogren’s Syndrome. Lupus, 20, 928-935.
https://doi.org/10.1177/0961203311399606
[46]  Bach, M., Moon, J., Moore, R., Pan, T., Nelson, J.L. and Lood, C. (2020) A Neutrophil Activation Biomarker Panel in Prognosis and Monitoring of Patients with Rheumatoid Arthritis. Arthritis & Rheumatology, 72, 47-56.
https://doi.org/10.1002/art.41062
[47]  Chen, W., Wang, Q., Ke, Y. and Lin, J. (2018) Neutrophil Function in an Inflammatory Milieu of Rheumatoid Arthritis. Journal of Immunology Research, 2018, Article ID: 8549329.
https://doi.org/10.1155/2018/8549329
[48]  Benhamou, Y., Bellien, J., Armengol, G., Brakenhielm, E., Adriouch, S., Iacob, M., et al. (2014) Role of Toll-Like Receptors 2 and 4 in Mediating Endothelial Dysfunction and Arterial Remodeling in Primary Arterial Antiphospholipid Syndrome. Arthritis & Rheumatology, 66, 3210-3220.
https://doi.org/10.1002/art.38785
[49]  Hernanz, R., Martinez-Revelles, S., Palacios, R., Martin, A., Cachofeiro, V., Aguado, A., et al. (2015) Toll-Like Receptor 4 Contributes to Vascular Remodelling and Endothelial Dysfunction in Angiotensin II-Induced Hypertension. British Journal of Pharmacology, 172, 3159-3176.
https://doi.org/10.1111/bph.13117
[50]  Kuzmich, N.N., Sivak, K.V., Chubarev, V.N., Porozov, Y.B., Savateeva-Lyubimova, T.N. and Peri, F. (2017) TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis. Vaccines, 5, Article No. 34.
https://doi.org/10.3390/vaccines5040034
[51]  Ma, B., Dohle, E., Li, M. and Kirkpatrick, C.J. (2017) TLR4 Stimulation by LPS Enhances Angiogenesis in a Co-Culture System Consisting of Primary Human Osteoblasts and Outgrowth Endothelial Cells. Journal of Tissue Engineering and Regenerative Medicine, 11, 1779-1791.
https://doi.org/10.1002/term.2075
[52]  Rahimifard, M., Maqbool, F., Moeini-Nodeh, S., Niaz, K., Abdollahi, M., Braidy, N., et al. (2017) Targeting the TLR4 Signaling Pathway by Polyphenols: A Novel Therapeutic Strategy for Neuroinflammation. Ageing Research Reviews, 36, 11-19.
https://doi.org/10.1016/j.arr.2017.02.004
[53]  Wang, W., Deng, M., Liu, X., Ai, W., Tang, Q. and Hu, J. (2011) TLR4 Activation Induces Nontolerant Inflammatory Response in Endothelial Cells. Inflammation, 34, 509-518.
https://doi.org/10.1007/s10753-010-9258-4
[54]  Keshari, R.S., Jyoti, A., Dubey, M., Kothari, N., Kohli, M., Bogra, J., et al. (2012) Cytokines Induced Neutrophil Extracellular Traps Formation: Implication for the Inflammatory Disease Condition. PLOS ONE, 7, e48111.
https://doi.org/10.1371/journal.pone.0048111
[55]  Lavoie, S.S., Dumas, E., Vulesevic, B., Neagoe, P.E., White, M. and Sirois, M.G. (2018) Synthesis of Human Neutrophil Extracellular Traps Contributes to Angiopoietin-Mediated in Vitro Proinflammatory and Proangiogenic Activities. The Journal of Immunology, 200, 3801-2813.
https://doi.org/10.4049/jimmunol.1701203
[56]  Pieterse, E., Rother, N., Garsen, M., Hofstra, J.M., Satchell, S.C., Hoffmann, M., et al. (2017) Neutrophil Extracellular Traps Drive Endothelial-to-Mesenchymal Transition. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 1371-1379.
https://doi.org/10.1161/ATVBAHA.117.309002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133