In this paper, we study to solve the Cauchy, Jensen and Cauchy-Jensen additive function inequalities with 3k-variables related to Jordan-von Neumann type in the spirit of the Rassias stability approach for approximate homomorphisms in Banach space. These are the main results of this paper.
References
[1]
Ulam, S.M. (1960) A Collection of Mathematical Problems. Interscience Publishers, New York.
[2]
Hyers, D.H. (1941) On the Stability of the Functional Equation. Proceedings of the National Academy of the United States of America, 27, 222-224.
https://doi.org/10.1073/pnas.27.4.222
[3]
Rassias, T.M. (1978) On the Stability of the Linear Mapping in Banach Spaces. Proceedings of the American Mathematical Society, 72, 297-300.
https://doi.org/10.1090/S0002-9939-1978-0507327-1
[4]
Gajda, Z. (1991) On Stability of Additive Mappings. International Journal of Mathematics and Mathematical Sciences, 14, Article ID: 817959.
https://doi.org/10.1155/S016117129100056X
[5]
Czerwik, S. (2002) Functional Equations and Inequalities in Several Variables. World Scientific, Singapore. https://doi.org/10.1142/4875
[6]
Găvrut, P. (1994) A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings. Journal of Mathematical Analysis and Applications, 184, 431-436. https://doi.org/10.1006/jmaa.1994.1211
[7]
Gilányi, A. (2001) Eine zur Parallelogrammgleichung äquivalente Ungleichung. Aequationes Mathematicae, 62, 303-309. https://doi.org/10.1007/PL00000156
[8]
Rätz, J. (2003) On Inequalities Associated with the Jordan-von Neumann Functional Equation. Aequationes Mathematicae, 66, 191-200.
https://doi.org/10.1007/s00010-003-2684-8
[9]
Gilányi, A. (2002) On a Problem by K. Nikodem. Mathematical Inequalities & Applications, 5, 707-710. https://doi.org/10.7153/mia-05-71
[10]
Rassias, T.M. (1990) Report of the 27th International Symposium on Functional Equations. Aequationes Mathematicae, 39, 292-393, 309.
[11]
Rassias, T.M. and Semrl, P. (1992) On the Behavior of Mappings Which Do Not Satisfy Hyers-Ulam Stability. Proceedings of the American Mathematical Society, 114, 989-993. https://doi.org/10.1090/S0002-9939-1992-1059634-1
[12]
Hyers, D.H., Isac, G. and Rassias, T.M. (1998) Stability of Functional Equations in Several Variables. In: Brezis, H., Ed., Progress in Nonlinear Differential Equations and Their Applications, Vol. 34, Birkhäuser, Boston.
https://doi.org/10.1007/978-1-4612-1790-9
[13]
Rassias, J.M. (1982) On Approximation of Approximately Linear Mappings by Linear Mappings. Journal of Functional Analysis, 46, 126-130.
https://doi.org/10.1016/0022-1236(82)90048-9
[14]
Jun, K.-W. and Lee, Y.-H. (2004) A Generalization of the Hyers-Ulam-Rassias Stability of the Pexiderized Quadratic Equations. Journal of Mathematical Analysis and Applications, 297, 70-86. https://doi.org/10.1016/j.jmaa.2004.04.009
[15]
Jung, S.-M. (2001) Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor.
[16]
Park, C.-G. (2005) Homomorphisms between Poisson JC-Algebras. Bulletin of the Brazilian Mathematical Society, 36, 79-97.
https://doi.org/10.1007/s00574-005-0029-z
[17]
Park, C. (2008) Hyers-Ulam-Rassias Stability of Homomorphisms in Quasi-Banach Algebras. Bulletin des Sciences Mathématiques, 132, 87-96.
https://doi.org/10.1016/j.bulsci.2006.07.004
[18]
Aoki, T. (1950) On the Stability of the Linear Transformation in Banach Space. Journal of the Mathematical Society of Japan, 2, 64-66.
https://doi.org/10.2969/jmsj/00210064
[19]
Bahyrycz, A. and Piszczek, M. (2014) Hyers Stability of the Jensen Function Equation. Acta Mathematica Hungarica, 142, 353-365.
https://doi.org/10.1007/s10474-013-0347-3
[20]
Balcerowski, M. (2013) On the Functional Equations Related to a Problem of Z. Boros and Z. Dróczy. Acta Mathematica Hungarica, 138, 329-340.
https://doi.org/10.1007/s10474-012-0278-4
[21]
Fechner, W. (2006) Stability of a Functional Inequlities Associated with the Jordan-von Neumann Functional Equation. Aequationes Mathematicae, 71, 149-161.
https://doi.org/10.1007/s00010-005-2775-9
[22]
Prager, W. and Schwaiger, J. (2013) A System of Two Inhomogeneous Linear Functional Equations. Acta Mathematica Hungarica, 140, 377-406.
https://doi.org/10.1007/s10474-013-0315-y
[23]
Maligranda, L. (2008) Tosio Aoki (1910-1989). In: Kato, M. and Maligranda, L., Eds., International Symposium on Banach and Function Spaces (14/09/2006-17/09/2006), Yokohama Publishers, Yokohama, 1-23.
[24]
Najati, A. and Eskandani, G.Z. (2008) Stability of a Mixed Additive and Cubic Functional Equation in Quasi-Banach Spaces. Journal of Mathematical Analysis and Applications, 342, 1318-1331. https://doi.org/10.1016/j.jmaa.2007.12.039
[25]
Fechner, W. (2010) On Some Functional Inequalities Related to the Logarithmic Mean. Acta Mathematica Hungarica, 128, 31-45.
https://doi.org/10.1007/s10474-010-9153-3
[26]
Park, C. (2014) Additive β—Functional Inequalities. Journal of Nonlinear Sciences and Applications, 7, 296-310. https://doi.org/10.22436/jnsa.007.05.02
[27]
An, L.V. (2019) Hyers-Ulam Stability of Functional Inequalities with Three Variables in Banach Spaces and Non-Archimedean Banach Spaces. International Journal of Mathematical Analysis, 13, 519-537. https://doi.org/10.12988/ijma.2019.9954
[28]
Park, C. (2015) Functional in Equalities in Non-Archimedean Normed Spaces. Acta Mathematica Sinica, English Series, 31, 353-366
https://doi.org/10.1007/s10114-015-4278-5
[29]
Jung Rye Lee, J.R., Park, C. and Shin, D.Y. (2014) Additive and Quadratic Functional in Equalities in Non-Archimedean Normed Spaces. International Journal of Mathematical Analysis, 8, 1233-1247. https://doi.org/10.12988/ijma.2014.44113
[30]
Cho, Y.J., Park, C. and Saadati, R. (2010) Functional Inequalities in Non-Archimedean Normed Spaces. Applied Mathematics Letters, 23, 1238-1242.
https://doi.org/10.1016/j.aml.2010.06.005
[31]
Aribou, Y. and Kabbaj, S. (2018) Generalized Functional Inequalities in Non-Archimedean Banach Spaces. Asia Mathematika, 2, 61-66.
[32]
An, L.V. (2020) Hyers-Ulam Stability Additive β-Functional Inequalities with Three Variables in Non-Archimedean Banach Space and Complex Banach Spaces. International Journal of Mathematical Analysis, 14, 219-239.
https://doi.org/10.12988/ijma.2020.91169
[33]
An, L.V. (2021) Generalized Hyers-Ulam Stability of the Additive Functional Inequalities with 2n-Variables in Non-Archimedean Banach Spaces. Bulletin of Mathematics and Statistics Research, 9, 67-73.
http://bomsr.com/9.3.21/67-73%20LY%20VAN%20AN.pdf
[34]
Qarawani, M.N. (2013) Hyers-Ulam-Rassias Stability for the Heat Equation. Applied Mathematics, 4, 1001-1008. https://doi.org/10.4236/am.2013.47137