|
变温场诱导相分离的格子Boltzmann数值模拟
|
Abstract:
相分离是环境条件发生变化导致原来混合流体分离出两相或多相的不稳定倾向和过程,是多相流研究的核心内容之一。本文采用自由能格子Boltzmann模型,将流体黏度与温度变化过程耦合,研究二元混合流体在温度变化条件下的相分离行为。
Phase separation is an unstable tendency and process of separating two or more phases from the original mixed fluids due to the change in environmental conditions. It is one of the core contents in the study of multiphase fluids. In this paper, the phase separation behavior of binary fluids under the change of temperature is studied by the free-energy lattice Boltzmann model coupling the fluid viscosity and temperature.
[1] | Gonnella, G., Lamura, A. and Sofonea, V. (2007) Lattice Boltzmann Simulation of Thermal Nonideal Fluids. Physical Review E, 76, Article ID: 036703. https://doi.org/10.1103/PhysRevE.76.036703 |
[2] | Gan, Y., Xu, A., Zhang, G., Li, Y. and Li, H. (2011) Phase Separation in Thermal Systems: A Lattice Boltzmann Study and Morphological Charac-terization. Physical Review E, 84, Article ID: 046715.
https://doi.org/10.1103/PhysRevE.84.046715 |
[3] | Gan, Y., Xu, A., Zhang, G., Zhang, P. and Li, Y. (2012) Lattice Boltzmann Study of Thermal Phase Separation: Effects of Heat Conduction, Viscosity and Prandtl Number. Europhysics Letters, 97, Article No. 44002.
https://doi.org/10.1209/0295-5075/97/44002 |
[4] | Gan, Y., Xu, A., Zhang, G. and Succi, S. (2015) Discrete Boltzmann Modeling of Multiphase Flows: Hydrodynamic and Thermodynamic Non-Equilibrium Effects. Soft Matter, 11, 5336-5345. https://doi.org/10.1039/C5SM01125F |
[5] | 张玉东. 非平衡流与多相流的建模与研究——基于离散Boltzmann方法[D]: [博士学位论文]. 南京: 南京理工大学, 2019. |
[6] | Onuki, A. (1982) Periodic Spinodal Decomposition in Solid and Fluid Binary Mixtures. Physical Review Letters, 48, 753-756. https://doi.org/10.1103/PhysRevLett.48.753 |
[7] | Langer, J.S. (1980) Instabilities and Pattern Formation in Crystal Growth. Reviews of Modern Physics, 52, 1-28.
https://doi.org/10.1103/RevModPhys.52.1 |
[8] | Cheng, L.P., Lin, D.J., Shih, C.H., Dwan, A.H. and Gryte, C.C. (2015) PVDF Membrane Formation by Diffusion-Induced Phase Separation-Morphology Prediction Based on Phase Behavior and Mass Transfer Modeling. Journal of Polymer Science Part B Polymer Physics, 37, 2079-2092.
https://doi.org/10.1002/(SICI)1099-0488(19990815)37:16<2079::AID-POLB11>3.0.CO;2-Q |
[9] | Zeinali, R., del Valle, L.J., Torras, J. and Puiggalí, J. (2021) Recent Progress on Biodegradable Tissue Engineering Scaffolds Prepared by Thermally-Induced Phase Separation (TIPS). International Journal of Molecular Sciences, 22, Article No. 3504. https://doi.org/10.3390/ijms22073504 |
[10] | Joseph, J.A., Espinosa, J.R., Sanchez-Burgos, I., Garaizar, A., Frenkel, D. and Collepardo-Guevara, R. (2021) Thermodynamics and Kinetics of Phase Separation of Protein-RNA Mixtures by a Minimal Model. Biophysical Journal, 120, 1219-1230. https://doi.org/10.1016/j.bpj.2021.01.031 |
[11] | Hajili, E., Suo, Z., Sugawara, A., Asoh, T. and Uyama, H. (2022) Fabrication of Chitin Monoliths with Controllable Morphology by Thermally Induced Phase Separation of Chemically Modified Chitin. Carbohydrate Polymers, 275, Article ID: 118680. https://doi.org/10.1016/j.carbpol.2021.118680 |
[12] | Zhang, H., Wang, F. and Nestler, B. (2022) Janus Droplet Formation via Thermally Induced Phase Separation: A Numerical Model with Diffusion and Convection. Lang-muir, 38, 6882-6895.
https://doi.org/10.1021/acs.langmuir.2c00308 |
[13] | Rowlinson, J.S. and Widom, B. (1982) Molecular Theory of Capillarity. Clarendon, Oxford. |
[14] | Puri, S. (2004) Kinetics of Phase Transitions. Phase Transitions, 77, 407-431.
https://doi.org/10.1080/01411590410001672648 |
[15] | Orlandini, E., Swift, M.R. and Yeomans, J.M. (1995) A Lat-tice Boltzmann Model of Binary Fluid Mixture. Europhysics Letters, 32, 463-468. https://doi.org/10.1209/0295-5075/32/6/001 |
[16] | Swift, M.R., Orlandini, E., Osborn, W. and Yeomans, J.M. (1996) Lattice Boltzmann Simulations of Liquid-Gas and Binary Fluid Systems. Physical Review E, 54, 5041-5052. https://doi.org/10.1103/PhysRevE.54.5041 |
[17] | Kafoussias, N.G. and Williams, E.W. (1995) Thermal-Diffusion and Diffusion-Thermo Effects on Mixed Free-Forced Convective and Mass Transfer Boundary Layer Flow with Tem-perature Dependent Viscosity. International Journal of Engineering Science, 33, 1369-1384. https://doi.org/10.1016/0020-7225(94)00132-4 |
[18] | Reichl, L.E. (1980) A Modern Course in Statistical Physics. Edward Arnold, London. |
[19] | Bartoloni, A., Battista, C., Cabasino, S., et al. (1993) LBE Simulations of Ray-leigh-B?nard Convection on the APE100 Parallel Processor. International Journal of Modern Physics C, 4, 993-1006.
https://doi.org/10.1142/S012918319300077X |
[20] | Qian, Y.H., d’Humieres, D. and Lallemand, P. (1992) Lattice BGK Models for Navier-Stokes Equation. Europhysics Letters, 17, 479-484. https://doi.org/10.1209/0295-5075/17/6/001 |
[21] | Ho, C.F., Chang, C., Lin, K.H. and Lin, C.A. (2009) Consistent Boundary Conditions for 2D and 3D Lattice Boltzmann Simulations. Computer Modeling in Engineering & Sciences, 44, 137-155. |
[22] | 孙喆. 聚合物复杂流体的自洽场理论与非等温相变动力学[D]: [博士学位论文]. 天津: 天津大学, 2006. |