|
铜离子介导二氧化锰对甲基橙转化机制研究
|
Abstract:
众所周知,土壤环境中常见的锰氧化物对污染物的环境行为能够产生重要影响。但关于锰氧化物与重金属离子混合体系下,污染物的转化行为还不太清晰。因此,本研究探讨了环境中典型染料甲基橙在重金属铜离子(Cu2+)与二氧化锰(MnO2)混合体系中的转化行为。首先利用X射线衍射仪(XRD)、高分辨扫描电镜仪(FESEM)和比表面积仪(BET)对制备的MnO2的晶型、表面形貌和比表面积等性质进行分析。随后,通过室内批次实验探讨了Cu2+和甲基橙含量以及反应溶液pH值等因素对反应体系中甲基橙的降解行为的影响。结果表明,总体上,Cu2+显著抑制了反应体系中甲基橙的去除效率;随着反应溶液pH值的降低,反应体系中甲基橙的抑制效率呈现出明显的下降趋势。此外,添加的Cu2+含量与反应体系中甲基橙的去除效率呈现显著的负相关;甲基橙含量的提升明显降低了甲基橙的抑制效率。分析证实,Cu2+与甲基橙结合MnO2表面活性位点之间的竞争关系决定了反应体系中甲基橙的去除效率。因此,本研究对深入理解实际土壤环境中锰氧化物对染料类污染物环境行为具有重要理论意义和现实意义。
As we all know, the common manganese oxides in the soil environment can have an important impact on the environmental behavior of pollutants. However, the transformation behavior of pollutants in the mixed system of manganese oxide and heavy metal ions is still unclear. Therefore, this study discussed the transformation behavior of methyl orange, a typical dye in the envi-ronment, in the mixed system of heavy metal copper ion (Cu2+) and manganese dioxide (MnO2). Firstly, X-ray diffraction (XRD), high-resolution scanning electron microscopy (FESEM) and specific surface area meter (BET) were used to analyze the crystal form, surface morphology and specific surface area of the prepared MnO2. Then, the effects of Cu2+, methyl orange content and pH of the reaction solution on the degradation behavior of methyl orange in the reaction system were discussed through laboratory batch experiments. The results showed that overall, Cu2+ significantly inhibited the removal efficiency of methyl orange in the reaction system. With the decrease in the pH value of the reaction solution, the inhibition efficiency of methyl orange in the reaction system showed an obvious downward trend. In addition, the content of Cu2+ was negatively correlated with the removal efficiency of methyl orange in the reaction system. The increase in methyl orange content obviously reduces the inhibition efficiency of methyl orange. The analysis confirmed that the competitive relationship between Cu2+ and the surface active sites of methyl orange combined with MnO2 determined the removal efficiency of methyl orange in the reaction system. Therefore, this study is of great theoretical and practical significance to deeply understand the environmental behavior of manganese oxides on dye pollutants in the actual soil environment.
[1] | Zhou, C.-G., Gao, Q., Wang, S., et al. (2016) Remarkable Performance of Magnetized Chitosan-Decorated Lignocel-lulose Fiber towards Biosorptive Removal of Acidic Azo Colorant from Aqueous Environment. Reactive and Functional Polymers, 100, 97-106. https://doi.org/10.1016/j.reactfunctpolym.2015.11.010 |
[2] | Lazaridis, N.K. and Keenan, H. (2010) Chitosan Beads as Barriers to the Transport of Azo Dye in Soil Column. Journal of Hazardous Materials, 173, 144-150. https://doi.org/10.1016/j.jhazmat.2009.08.062 |
[3] | Rashid, T., Iqbal, D., Hazafa, A., et al. (2020) Formulation of Zeolite Supported Nano-Metallic Catalyst and Applications in Textile Effluent Treatment. Journal of Environmental Chemical Engineering, 8, Article ID: 104023.
https://doi.org/10.1016/j.jece.2020.104023 |
[4] | Chung, K.-T. (2016) Azo Dyes and Human Health: A Review. Journal of Environmental Science and Health, Part C, 34, 233-261. https://doi.org/10.1080/10590501.2016.1236602 |
[5] | 巴桑. 偶氮染料与化合物的颜色及危害[J]. 西藏科技, 2015(1): 38-39. |
[6] | Lu, A., Li, Y., Liu, F., et al. (2021) The Photogeochemical Cycle of Mn Oxides on the Earth’s Surface. Mineralogical Magazine, 85, 22-38. https://doi.org/10.1180/mgm.2021.10 |
[7] | Feng, X.H., Zhai, L.M., Tan, W.F., et al. (2007) Adsorption and Redox Reactions of Heavy Metals on Synthesized Mn Oxide Minerals. Envi-ronmental Pollution, 147, 366-373. https://doi.org/10.1016/j.envpol.2006.05.028 |
[8] | Islam Md, A., Morton, D.W., Johnson, B.B., et al. (2018) Manganese Oxides and Their Application to Metal Ion and Contaminant Removal from Wastewater. Journal of Water Process Engineering, 26, 264-280.
https://doi.org/10.1016/j.jwpe.2018.10.018 |
[9] | 周林. 二氧化锰/有机酸对四环素降解的研究[D]: [硕士学位论文]. 长春: 吉林大学, 2017. |
[10] | Chiam, S.-L., Pung, S.-Y., Yeoh, F.Y., et al. (2022) Highly Efficient Oxidative Degradation of Organic Dyes by Manganese Dioxide Nanoflowers. Materials Chemistry and Physics, 280, Article ID: 125848.
https://doi.org/10.1016/j.matchemphys.2022.125848 |
[11] | Baldwin, D.S., Beattie, J.K., Coleman, L.M., et al. (2001) Hydrolysis of an Organophosphate Ester by Manganese Dioxide. Environmental Science & Technology, 35, 713-716. https://doi.org/10.1021/es001309l |
[12] | Huang, J., Zhong, S., Dai, Y., et al. (2018) Effect of MnO2 Phase Structure on the Oxidative Reactivity toward Bisphenol A Degradation. Environmental Science & Technology, 52, 11309-11318.
https://doi.org/10.1021/acs.est.8b03383 |
[13] | 饶振中. 天然氧化锰矿高级氧化降解水中普施安蓝MX-R[D]: [硕士学位论文]. 重庆: 重庆大学, 2017. |
[14] | 张立珠. 新生态二氧化锰对水中有机污染物的强化去除作用[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2008. |
[15] | Taujale, S., Baratta, L.R., Huang, J., et al. (2016) Interactions in Ternary Mixtures of MnO2, Al2O3, and Natural Organic Matter (NOM) and the Impact on MnO2 Oxidative Reactivity. American Chemical Society, Washington DC. |
[16] | 陈梅青. 聚羟基铁与土壤矿物的相互作用机制及其应用[D]: [硕士学位论文]. 广州: 华南理工大学, 2018. |
[17] | Gaffer, H.E. (2019) Antimicrobial Sulphonamide Azo Dyes. Coloration Technology, 135, 484-500.
https://doi.org/10.1111/cote.12437 |
[18] | Aboli Ghasemabadi, M., Ben Mbarek, W., Cerrillo-Gil, A., et al. (2020) Azo-Dye Degradation by Mn-Al Powders. Journal of Environmental Management, 258, Article ID: 110012. https://doi.org/10.1016/j.jenvman.2019.110012 |
[19] | Chen, A., Yang, B., Zhou, Y., et al. (2018) Effects of Azo Dye on Simultaneous Biological Removal of Azo Dye and Nutrients in Wastewater. Royal Society Open Science, 5, Article ID: 180795. https://doi.org/10.1098/rsos.180795 |
[20] | Rawat, D., Sharma, R.S., Karmakar, S., et al. (2018) Ecotoxic Potential of a Presumably Non-Toxic Azo Dye. Ecotoxicology and Environmental Safety, 148, 528-537. https://doi.org/10.1016/j.ecoenv.2017.10.049 |
[21] | Sen, S.K., Raut, S., Bandyopadhyay, P., et al. (2016) Fungal Decolouration and Degradation of Azo Dyes: A Review. Fungal Biology Reviews, 30, 112-133. https://doi.org/10.1016/j.fbr.2016.06.003 |
[22] | Ge, J. and Qu, J. (2003) Degradation of Azo Dye Acid Red B on Manganese Dioxide in the Absence and Presence of Ultrasonic Irradiation. Journal of Hazardous Materials, 100, 197-207. https://doi.org/10.1016/S0304-3894(03)00105-5 |
[23] | 冯攀, 俞小花, 李永刚, 等. α、γ、δ-MnO2制备及在铝空气电池中的应用[J]. 材料科学与工程学报, 2019, 37(3): 368-372. |
[24] | Forrez, I., Carballa, M., Verbeken, K., et al. (2010) Diclofenac Oxidation by Biogenic Manganese Oxides. Environmental Science & Technology, 44, 3449-3454. https://doi.org/10.1021/es9027327 |
[25] | 黄一帆. 纳米二氧化锰吸附重金属铜、镉离子特性及安全性评价[D]: [硕士学位论文]. 北京: 中国农业科学院, 2016. |
[26] | Demi? Rkiran, N. (2015) Copper Adsorption by Natural Manganese Dioxide. Transactions of Nonferrous Metals Society of China, 25, 647-653. https://doi.org/10.1016/S1003-6326(15)63648-2 |