全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类拟线性薛定谔方程规范化解的存在性和多重性
The Existence and Multiplicity of Normalized Solutions of a Class of Quasilinear Schr?dinger Equations

DOI: 10.12677/AAM.2022.1112897, PP. 8485-8503

Keywords: 拟线性Schr?dinger方程,基态解,规范化解,扰动型方法
Quasilinear Schr?dinger Equations
, Ground State Solutions, Normalized Solutions, Perturbation Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用扰动型方法证明了一类拟线性薛定谔方程基态规范化解的存在性和无穷多个规范化解的存在性。此外,分析了扰动泛函临界点的收敛性。
In this paper, we proved the existence of ground state normalized solutions and the existence of in-finitely many normalized solutions of a class of quasilinear Schr?dinger equations by applying the perturbation type method. Moreover, we study the convergence of the critical points of the pertur-bated functions.

References

[1]  Borovskii, A.V. and Galkin, A.L. (1993) Dynamical Modulation of an Ultrashort High-Intensity Laser Pulse in Matter. JETP: Journal of Experimental and Theoretical Physics, 77, 562-573.
[2]  Kurihara, S. (1981) Large-Amplitude Qua-si-Solitons in Superfluid Films. Journal of the Physical Society of Japan, 50, 3262-3267.
https://doi.org/10.1143/JPSJ.50.3262
[3]  Bass, F.G. and Nasanov, N.N. (1990) Nonlinear Electromagnetic Spin Waves. Physics Reports, 189, 165-223.
https://doi.org/10.1016/0370-1573(90)90093-H
[4]  Hasse, R.W. (1980) A General Method for the Solution of Nonlinear Soliton and Kink Schr?dinger Equations. Zeitschrift für Physik B Condensed Matter, 37, 83-87.
https://doi.org/10.1007/BF01325508
[5]  Makhankov, V.G. and Fedynanin,V.K. (1984) Non-Linear Effects in Quasi-One-Dimensional Models of Condensed Matter Theory. Physics Reports, 104, 1-86.
https://doi.org/10.1016/0370-1573(84)90106-6
[6]  Poppenberg, M., Schmitt, K. and Wang, Z. Q. (2002) On the Exisence of Soliton Solutions to Quasilinear Schr?dinger Equations. Calculus of Variations and Partial Differential Equations, 14, 329-344.
https://doi.org/10.1007/s005260100105
[7]  Li, Z. (2019) Positive Solutions for a Class of Singular Quasilinear Schr?dinger Equations with Critical Sobolev Exponent. Journal of Differential Equations, 266, 7264-7290.
https://doi.org/10.1016/j.jde.2018.11.030
[8]  Li, G. (2015) Positive Solution for Quasilinear Schr?dinger Equa-tions with a Parameter. Communications on Pure and Applied Analysis, 14, 1803-1816.
https://doi.org/10.3934/cpaa.2015.14.1803
[9]  Jeanjean, L. (1997) Existence of Solutions with Prescribed Norm for Semilinear Elliptic Equations. Nonlinear Analysis: Theory, Methods & Applications, 28, 1633-1659.
https://doi.org/10.1016/S0362-546X(96)00021-1
[10]  Bartsch, T. and De Valeriola, S. (2013) Normalized Solu-tions of Nonlinear Schr?dinger Equations. ArXiv: 1209.0950.
[11]  Ikoma, N. and Tanaka, K. (2019) A Note on Defor-mation Argument for L2 Normalized Solutions of Nonlinear Schr?dinger Equations and Systems. Advances in Differen-tial Equations, 24, 609-646.
[12]  Jeanjean, L. and Lu, S.-S. (2020) A Mass Supercritical Problem Revisited. Calculus of Variations and Partial Differential Equations, 59, Article No. 174.
https://doi.org/10.1007/s00526-020-01828-z
[13]  Soave, N. (2020) Normalized Ground States for the NLS Equa-tion with Combined Nonlinearities. Journal of Differential Equations, 269, 6941-6987.
https://doi.org/10.1016/j.jde.2020.05.016
[14]  Soave, N. (2020) Normalized Ground States for the NLS Equation with Combined Nonlinearities: The Sobolev Critical Case. Journal of Functional Analysis, 279, Article ID: 108610.
https://doi.org/10.1016/j.jfa.2020.108610
[15]  Jeanjean, L. and Le, T.T. (2021) Multiple Normalized Solutions for a Sobolev Critical Schr?dinger Equation. Mathematische Annalen, 384, 101-134.
https://doi.org/10.1007/s00208-021-02228-0
[16]  Jeanjean, L., Luo, T. and Wang, Z.Q. (2015) Multiple Normal-ized Solutions for Quasi-Linear Schr?dinger Equations. Journal of Differential Equations, 259, 3894-3928.
https://doi.org/10.1016/j.jde.2015.05.008
[17]  Li, H. and Zou, W. (2021) Quasilinear Schr?dinger Equations: Ground State and Infinitely Many Normalized Solutions. ArXiv: 2101.07574.
[18]  Yang, X., Tang, X. and Cheng, B. (2021) Multiple Radial and Nonradial Normalized Solutions for a Quasilinear Schr?dinger Equation. Journal of Mathe-matical Analysis and Applications, 501, Article ID: 125122.
https://doi.org/10.1016/j.jmaa.2021.125122
[19]  Liu, J.Q., Wang, Y.Q. and Wang, Z.Q. (2003) Soliton Solutions for Quasilinear Schr?dinger Equations, II. Journal of Differential Equations, 187, 473-493.
https://doi.org/10.1016/S0022-0396(02)00064-5
[20]  Liu, X.Q., Liu, J.Q. and Wang, Z.Q. (2013) Quasilinear El-liptic Equations with Critical Growth via Perturbation Method. Journal of Differential Equations, 254, 102-124.
https://doi.org/10.1016/j.jde.2012.09.006
[21]  Ghoussoub, N. (1993) Duality and Perturbation Methods in Critical Point Theory. Cambridge University Press, Cambridge.
[22]  Berestycki, H. and Lions, P.L. (1983) Nonlinear Scalar Field Equations II: Existence of Infinitely Many Solutions. Archive for Rational Mechanics and Analysis, 82, 347-375.
https://doi.org/10.1007/BF00250556
[23]  Berestycki, H. and Lions, P.L. (1983) Nonlinear Scalar Field Equations I: Existence of a Ground State. Archive for Rational Mechanics and Analysis, 82, 313-345.
https://doi.org/10.1007/BF00250555
[24]  Chang, K.C. (2005) Methods in Nonlinear Analysis. Springer Mono-graphs in Mathematics. Springer-Verlag, Berlin.
[25]  Colin, M., Jeanjean, L. and Squassina, M. (2010) Stability and In-stability Results for Standing Waves of Quasi-Linear Schr?dinger Equations. Nonlinearity, 23, 1353-1385.
https://doi.org/10.1088/0951-7715/23/6/006
[26]  Palais, R.S. (1979) The Principle of Symmetric Criticality. Communications in Mathematical Physics, 69, 19-30.
https://doi.org/10.1007/BF01941322
[27]  Szulkin, A. and Weth, T. (2009) Ground State Solutions for Some In-definite Variational Problems. Journal of Functional Analysis, 257, 3802-3822.
https://doi.org/10.1016/j.jfa.2009.09.013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133