|
基于有界高斯混合模型的高光谱图像去噪方法
|
Abstract:
针对高光谱图像的噪声去除问题,本文提出了一种基于有界高斯混合模型的高光谱图像去噪方法。在该方法中,我们使用张量表示高光谱图像,并对其进行Tucker分解,最后采用有界高斯混合模型对噪声进行拟合,从而将图像的固有特征和噪声建模相结合。我们将图像和噪声的先验信息表述为一个完整的贝叶斯模型,并设计了变分贝叶斯算法来封闭更新模型中所涉及的变量。最后,我们将本文所提出的去噪算法与其他算法进行对比,验证了该方法的先进性。
To solve the problems of hyperspectral images denoising, we proposed a hyperspectral image de-noising method which is based on bounded Gaussian mixture model in this paper. In this method, we denote hyperspectral images as tensors and use Tucker decomposition to decompose the image tensor into low-rank tensor, at last, we use bounded Gaussian mixture model to capture the noise, in which way we integrate intrinsic image characterizations and noise modeling. Then we describe image and noise priors as a full Bayesian model, and design a variational Bayesian algorithm to in-fer all involved variables by closed-form equations. At last, we compare the denoising method pro-posed in this paper with other algorithms and experiment results prove that our method is state-of-the-art.
[1] | Gao, J. (2020) Editorial for the Special Issue “Ecosystem Services with Remote Sensing”. Remote Sensing, 12, Article No. 2191. https://doi.org/10.3390/rs12142191 |
[2] | 唐尧, 王立娟, 马国超, 贾虎军, 靳晓. 利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测[J]. 遥感学报, 2019, 23(2): 252-261. |
[3] | 周培诚, 程塨, 姚西文, 韩军伟. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1): 182-197. |
[4] | Kolda, T.G. and Bader, B.W. (2009) Tensor Decompositions and Applications. SIAM Review, 51, 455-500.
https://doi.org/10.1137/07070111X |
[5] | Carroll, J.D. and Chang, J.J. (1970) Analysis of Individual Differences in Multidimensional Scaling via an N-Way Generalization of “Eckart-Young” Decomposition. Psychometrika, 35, 283-319. https://doi.org/10.1007/BF02310791 |
[6] | Liu, X., Bourennane, S. and Fossati, C. (2012) Denoising of Hyperspec-tral Images Using the PARAFAC Model and Statistical Performance Analysis. IEEE Transactions on Geoscience and Remote Sensing, 50, 3717-3724.
https://doi.org/10.1109/TGRS.2012.2187063 |
[7] | Zhao, Q., Zhang, L. and Cichocki, A. (2015) Bayesian CP Fac-torization of Incomplete Tensors with Automatic Rank Determination. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 37, 1751-1763.
https://doi.org/10.1109/TPAMI.2015.2392756 |
[8] | Tucker, L.R. (1966) Some Mathematical Notes on Three-Mode Factor Analysis. Psychometrika, 31, 279-311.
https://doi.org/10.1109/LGRS.2008.915736 |
[9] | Renard, N., Bourennane, S. and Blanc-Talon, J. (2008) Denoising and Dimensionality Reduction Using Multilinear Tools for Hyperspectral Images. IEEE Geoscience and Remote Sensing Letters, 5, 138-142.
https://doi.org/10.1109/LGRS.2008.915736 |
[10] | Liu, J., Musialski, P., Wonka, P. and Ye, J. (2013) Tensor Com-pletion for Estimating Missing Values in Visual Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 208-220.
https://doi.org/10.1109/TPAMI.2012.39 |
[11] | Peng, Y., Meng, D., Xu, Z., Gao, C., Yang, Y. and Zhang, B. (2014) Decomposable Nonlocal Tensor Dictionary Learning for Multispectral Image Denoising. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 2949-2956. https://doi.org/10.1109/CVPR.2014.377 |
[12] | Wang, Y., Peng, J., Zhao, Q., Leung, Y., Zhao, X.L. and Meng, D. (2018) Hyperspectral Image Restoration via Total Variation Regularized Low-Rank Tensor Decomposition. IEEE Jour-nal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1227-1243. https://doi.org/10.1109/JSTARS.2017.2779539 |
[13] | Okatani, T., Yoshida, T. and Deguchi, K. (2011) Efficient Algorithm for Low-Rank Matrix Factorization with Missing Components and Performance Comparison of Latest Algo-rithms. Proceedings of the 2011 International Conference on Computer Vision, Barcelona, 6-13 November 2011, 842-849. https://doi.org/10.1109/ICCV.2011.6126324 |
[14] | Zhao, Q., Meng, D., Xu, Z., Zuo, W. and Zhang, L. (2014) Robust Principal Component Analysis with Complex Noise. Proceedings of the 31st International Conference on Machine Learning, Beijing, 22-24 June 2014, 55-63. |
[15] | He, W., Zhang, H., Shen, H. and Zhang, L. (2018) Hyper-spectral Image Denoising Using Local Low-Rank Matrix Recovery and Global Spatial-Spectral Total Variation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 713-729. https://doi.org/10.1109/JSTARS.2018.2800701 |
[16] | Luo, Q., Han, Z., Chen, X., Wang, Y., Meng, D., Liang, D. and Tang, Y. (2017) Tensor RPCA by Bayesian CP Factorization with Complex Noise. Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 22-29 October 2017, 5029-5038. https://doi.org/10.1109/ICCV.2017.537 |
[17] | Chen, X., Han, Z., Wang, Y., Zhao, Q., Meng, D., Lin, L. and Tang, Y. (2018) A Generalized Model for Robust Tensor Factorization with Noise Modeling by Mixture of Gaussians. IEEE Transactions on Neural Networks and Learning Systems, 29, 5380-5393. https://doi.org/10.1109/TNNLS.2018.2796606 |
[18] | Ma, T., Xu, Z. and Meng, D. (2020) Remote Sensing Image Denoising via Low-Rank Tensor Approximation and Robust Noise Modeling. Remote Sensing, 12, 1278-1292. https://doi.org/10.3390/rs12081278 |
[19] | Deledalle, C., Parameswaran, S. and Nguyen, T. (2018) Image Denoising with Generalized Gaussian Mixture Model Patch Priors. SIAM Journal on Imaging Sciences, 11, 2568-2609. https://doi.org/10.1137/18M116890X |