全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

态与信道相互作用下的相干性和互补性的无限维推广
Infinite Dimensional Generalization of Coherence and Complementarity in State-Channel Interaction

DOI: 10.12677/AAM.2022.1112894, PP. 8453-8462

Keywords: 无限维,态与信道的相互作用,量子相干性,玻尔互补性
Infinite Dimension
, State-Channel Interaction, Quantum Correlation, Bohr’s Complementarity

Full-Text   Cite this paper   Add to My Lib

Abstract:

量子相干性和玻尔互补性是量子力学中两个重要的主题,对其的研究也在不断深入。本文给出了量子相干性和玻尔互补性在无限维态与信道相互作用下的表示。首先基于无限维的信道刻画,证明了无限维中的对称部分,非对称部分以及信道的希尔伯特–施密特范数是有限的,其中对称部分用对称的若尔当积表示,非对称部分用斜对称李积表示。然后证明了无限维情形中的非对称部分仍然满足4个性质,可以作为维格纳–亚纳斯–丹森斜信息的一种表示,最后通过证明无限维态与信道相互作用的非对称部分仍然满足10个性质,得到了无限维态与信道相互作用下的量子相干性和玻尔互补性。
Quantum coherence and Bohr’s complementarity are two significant topics in quantum mechanics. The research on them is deep-going from its very beginning. In this paper, we give the expression of quantum correlation and Bohr’s complementarity in state-channel interaction under infinite di-mensional case. First, based on the infinite dimensional channel characterization, we proved that the Hilbert Schmidt norm of the asymmetric part, the symmetric part, the channel are finite, even in the infinite dimension. The symmetric part is represented by the symmetric Jordan product, and the asymmetric part is synthesized by the skew-symmetric Lie product. Then it is proved that the asymmetric part still satisfies four properties, thus, it can represent the Wigner Yanase Dyson skew information, in the infinite dimensional case. Finally, by proving that the asymmetric part of state-channel interaction still satisfies 10 properties, we obtain the generalization of quantum co-herence and Bohr’s complementarity in state-channel interaction, under the infinite dimensional case.

References

[1]  Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A. and Zukowski, M. (2012) Multiphoton Entanglement and Interferometry. Reviews of Modern Physics, 84, 777-838.
https://doi.org/10.1103/RevModPhys.84.777
[2]  Horne, M.A., Shimony, A. and Zeilinger, A. (1989) Two-Particle Interferometry. Physical Review Letters, 62, 2209- 2212.
https://doi.org/10.1103/PhysRevLett.62.2209
[3]  Greenberger, D.M., Horne, M.A. and Zeilinger, A. (1993) Mul-tiparticle Interferometry and the Superposition Principle. Physics Today, 46, 22-29.
https://doi.org/10.1063/1.881360
[4]  Zukowski, M., Zeilinger, A., Horne, M.A. and Weinfurter, H. (1999) Inde-pendent Photons and Entanglement. A Short Overview. International Journal of Theoretical Physics, 38, 501-517.
https://doi.org/10.1023/A:1026622332641
[5]  Levy-Leblond, J.M. (1986) Correlation of Quantum Properties and the Generalized Heisenberg Inequality. American Journal of Physics, 54, 135-136.
https://doi.org/10.1119/1.14708
[6]  Marvian, I. and Spekkens, R.W. (2016) How to Quantify Coherence: Distin-guishing Speakable and Unspeakable Notions. Physical Review A, 94, Article ID: 052324.
https://doi.org/10.1103/PhysRevA.94.052324
[7]  Levi, F. and Mintert, F. (2014) A Quantitative Theory of Co-herent Delocalization. New Journal of Physics, 16, Article ID: 033007.
https://doi.org/10.1088/1367-2630/16/3/033007
[8]  Lostaglio, M., Korzekwa, K., Jennings, D. and Rudolph, T. (2015) Quantum Coherence, Time-Translation Symmetry, and Thermodynamics. Physical Review X, 5, Article ID: 021001.
https://doi.org/10.1103/PhysRevX.5.021001
[9]  Girolami, D. (2014) Observable Measure of Quantum Coherence in Finite Dimensional Systems. Physical Review X, 113, Article ID: 170401.
https://doi.org/10.1103/PhysRevLett.113.170401
[10]  Pires, D.P., Céleri, L.C. and Soares-Pinto, D.O. (2015) Geometric Lower Bound for a Quantum Coherence Measure. Physical Review A, 91, Article ID: 042330.
https://doi.org/10.1103/PhysRevA.91.042330
[11]  Bagan, E., Bergou, J.A., Cottrell, S.S. and Hillery, M. (2016) Relations between Coherence and Path Information, Physical Review Letters, 116, Article ID: 160406.
https://doi.org/10.1103/PhysRevLett.116.160406
[12]  Vaccaro, J.A. (2012) Particle-Wave Duality: A Dichotomy between Symmetry and Asymmetry. Proceedings of the Royal Society A, 468, 1065-1084.
https://doi.org/10.1098/rspa.2011.0271
[13]  Marvian, I. and Spekkens, R.W. (2013) The Theory of Manipulations of Pure State Asymmetry: I. Basic Tools, Equivalence Classes and Single Copy Transformations. New Journal of Phys-ics, 15, Article ID: 033001.
https://doi.org/10.1088/1367-2630/15/3/033001
[14]  Lichnerowicz, A. (1962) Propagators and Commutators in General Relativity. Proceedings of the Royal Society A, 270, 342-345.
https://doi.org/10.1098/rspa.1962.0226
[15]  Bloomfield, P.E. and Nafari, N. (1972) Commutator and Anticommu-tator Green’s Functions, Zero-Frequency Poles, and Long-Time Correlations. Physical Review A, 5, 806-813.
https://doi.org/10.1103/PhysRevA.5.806
[16]  Steeb, W.H. and Hardy, Y. (2014) Spin Operators, Pauli Group, Commutators, Anti-Commutators, Kronecker Product and Applications. ArXiv: 1405.5749.
[17]  Combescot, M. and Betbeder-Matibet, O. (2010) General Many-Body Formalism for Composite Quantum Particles. Physical Review Letters, 104, Article ID: 206404.
https://doi.org/10.1103/PhysRevLett.104.206404
[18]  Vasilchuk, V. (2003) On the As-ymptotic Distribution of the Commutator and Anti-Commutator of Random Matrices, Journal of Mathematical Physics, 44, 1882-1908.
https://doi.org/10.1063/1.1557329
[19]  Luo, S. (2003) Wigner-Yanase Skew Information and Un-certainty Relations. Physical Review Letters, 91, Article ID: 180403.
https://doi.org/10.1103/PhysRevLett.91.180403
[20]  Luo, S. and Sun, Y. (2018) Coherence and Complementarity in State-Channel Interaction. Physical Review A, 98, Article ID: 0121131.
https://doi.org/10.1103/PhysRevLett.91.180403
[21]  Hou, J.C. (2010) A Characterization of Positive Linear Maps and Criteria of Entanglement for Quantum States. Journal of Physics A: Mathematical and General, 43, Article ID: 385201.
https://doi.org/10.1088/1751-8113/43/38/385201
[22]  Hou J.C. (1995) Operator Tensor Product and Ele-mentary Operators on C_2. Acta Mathematica Sinica: Chinese Series, 38, 467-474.
[23]  Lieb, E.H. (1975) Some Con-vexity and Subadditivity Properties of Entropy. Bulletin of the American Mathematical Society, 81, 267-288.
https://doi.org/10.1090/S0002-9904-1975-13621-4
[24]  Lieb, E.H. (1973) Convex Trace Functions and the Wig-ner-Yanase-Dyson Conjectur. Advances in Mathematics, 11, 267-288.
https://doi.org/10.1016/0001-8708(73)90011-X
[25]  He, K., Hou, J.C. and Li, C.K. (2013) A Geometric Charac-terization of Invertible Quantum Measurement Maps. Journal of Functional Analysis, 264, 464-478.
https://doi.org/10.1016/j.jfa.2012.11.005
[26]  Páles, Z. (2012) Characterization of Segment and Convexity Pre-serving. ArXiv: 1212.1268.
[27]  Luo, S. and Zhang, Q. (2017) Skew Information Decreases under Quantum Measure-ments. Theoretical and Mathematical Physics, 151, 529-538.
https://doi.org/10.1007/s11232-007-0039-7
[28]  Hansen, F. (2007) The Wigner-Yanase Entropy Is Not Subaddi-tive. Journal of Statistical Physics, 126, 643-648.
https://doi.org/10.1007/s10955-006-9265-x
[29]  Luo, S. and Zhang, Q. (2008) Superadditivity of Wig-ner-Yanase-Dyson Information Revisited. Journal of Statistical Physics, 131, 1169-1177.
https://doi.org/10.1007/s10955-008-9534-y

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133