全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Beta四元数样条曲线相关问题研究
Research on the Beta Quaternion Spline

DOI: 10.12677/AAM.2022.1112892, PP. 8431-8441

Keywords: Beta四元数样条曲线,插值,几何连续,刚体运动
Beta Quaternion Spline
, Interpolation, Geometrically Continuous, Rigid Body Motion

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了更加灵活地调控单位四元数样条曲线,局部控制样条曲线形状,本文基于球面Bézier曲线,将欧氏空间中的Beta样条曲线推广到四元数空间,给出Beta四元数样条曲线定义。证明了该样条曲线满足G1连续,给出了满足G2连续的充要条件及其证明。最后通过数值实验验证该方法的可行性。本文构造的四元数样条曲线是由控制多边形的顶点直接定义曲线控制顶点,只需改变某段形状参数的取值,即可局部调控样条曲线形状。
In order to control the unit quaternion spline more flexibly locally, this paper generalizes the Beta spline in the Euclidean space to the quaternion space based on the spherical Bézier curve, and gives the definition of the Beta quaternion spline. It is proved that the spline satisfies the first-order ge-ometric continuity. The Sufficient requisites for satisfying the second-order geometric continuity and the proof are given. Finally, numerical experiments are used to verify the feasibility of the pro-posed method. The control points of quaternion spline constructed in this paper are directly de-fined by the points of the control polygon, and the spline shape can be controlled locally by simply changing the value of some shape parameters.

References

[1]  Su, B.Y., Zhang, J. and Wang, G.J. (2013) The Solid Orientations Interpolation in Quaternion Space Using a Class of Blending Interpolation Spline. International Journal of Advancements in Computing Technology, 5, 335-341.
https://doi.org/10.4156/ijact.vol5.issue6.39
[2]  Barsky, B.A. (1981) The Beta Spline: A Local Representation Based on Shape Parameters and Fundamental Geometric Measure. Ph.D. Thesis, University of Utah, Salt Lake City.
[3]  Barsky, B.A. and DeRose, T.D. (1990) Geometric Continuity of Parametric Curves: Constructions of Geo-metrically Continuous Splines. IEEE Computer Graphics and Applications, 10, 60-68.
https://doi.org/10.1109/38.45811
[4]  Joe, B. (1990) Quartic Beta-Splines. ACM Transactions on Graphics, 9, 301-337.
https://doi.org/10.1145/78964.78968
[5]  Munir, N.A.A.A., Yahya, F. and Hadi, N.A. (2018) C1 Quad-ratic Trigonometric Beta Spline with a Shape Parameter. AIP Conference Proceedings, 1974, Article No. 030028.
https://doi.org/10.1063/1.5041672
[6]  Shoemake, K. (1985) Animating Rotation with Quaternion Curves. ACM SIGGRAPH Computer Graphics, 19, 245-254.
https://doi.org/10.1145/325165.325242
[7]  Dam, E.B., Koch, M. and Lillholm, M. (1998) Quaternions, Interpo-lation and Animation. Datalogisk Institut, K?benhavns Universitet, Copenhagen.
[8]  Kim, M.J., Kim, M.S. and Shin, S.Y. (1996) A Compact Differential Formula for the First Derivative of a Unit Quaternion Curve. The Journal of Visual-ization and Computer Animation, 7, 43-57.
https://doi.org/10.1002/(SICI)1099-1778(199601)7:1<43::AID-VIS136>3.0.CO;2-T
[9]  Kim, M.J., Kim, M.S. and Shin, S.Y. (1995) A General Construction Scheme for Unit Quaternion Curves with Simple High Order Derivatives. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, Association for Computing Machinery, New York, 369-376.
https://doi.org/10.1145/218380.218486
[10]  Nielson, G.M. (2004) ν-Quaternion Splines for the Smooth Interpolation of Orientations. IEEE Transactions on Visualization and Computer Graphics, 10, 224-229.
https://doi.org/10.1109/TVCG.2004.1260774
[11]  邢燕, 樊文, 檀结庆, 许任政. 一类C2连续的单位四元数插值样条曲线[J]. 计算机辅助设计与图形学学报, 2017, 29(1): 45-51.
[12]  邢燕, 白龙, 樊文, 檀结庆. C3连续的单位四元数插值样条曲线[J]. 中国图象图形学报, 2018, 23(4): 534-541.
[13]  Tan, J., Xing, Y., Fan, W. and Hong, P. (2018) Smooth Orientation Interpolation Using Parametric Quintic-Polyno- mial-Based Qua-ternion Spline Curve. Journal of Computational and Applied Mathematics, 329, 256-267.
https://doi.org/10.1016/j.cam.2017.07.007
[14]  孙楠, 王倩, 何耀, 杨雷, 陈佳惠. Bézier四元数曲线相关问题研究[J]. 应用数学进展, 2022, 11(3): 1428-1437.
[15]  施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 北京: 高等教育出版社, 2001: 12-24.
[16]  王倩, 潘乐, 张洁琳, 彭兴璇. 具有局部性质的球面插值样条曲线的构造[J]. 图学学报, 2021, 42(2): 230-236.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133