全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rn上返回排斥子的Lipschitz结构稳定性
The Lipschitz Perturbations of Snapback Re-pellers in Rn

DOI: 10.12677/AAM.2022.1112891, PP. 8426-8430

Keywords: 混沌动力系统,Lipschitz扰动,返回排斥子,结构稳定性
Chaotic Dynamical System
, Lipschitz Perturbations, Snapback Repellers, Structural Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究欧氏空间上返回排斥子的Lipschitz扰动。设f,g是欧氏空间Rn上的连续自映射,如果f具有返回排斥子且g是f的Lipschitz小扰动,则g也有返回排斥子。因此欧氏空间Rn上的返回排斥子是Lipschitz结构稳定的。
This note is concerned with the effect of small Lipschitz perturbations of a discrete dynamical sys-tem in Rn. Let f, g be continuous map from Rn into itself. If f has snap-back repellers and g is a small Lipschitz perturbations of f, then g has snap-back repellers. In addition, the snap-back repellers are Lipschitz structural stability in Rn.

References

[1]  Banks, J., Brooks, J., Cairns, G., Davis, G. and Stacey, P. (1992) On Devaney’s Definition of Chaos. The American Mathematical Monthly, 99, 332-334.
https://doi.org/10.1080/00029890.1992.11995856
[2]  Chen, Y., Huang, T. and Huang, Y. (2014) Complex Dynamics of a Delayed Discrete Neural Network of Two Nonidentical Neurons. Chaos: An Interdisciplinary Journal of Nonlinear Science, 24, Article No. 013108.
https://doi.org/10.1063/1.4861756
[3]  Chen, Y., Huang, Y. and Li, L. (2011) The Persistence of Snap-Back Re-peller under Small C1 Perturbations in Banach Spaces. International Journal of Bifurcation and Chaos, 21, 703-710.
https://doi.org/10.1063/1.4861756
[4]  Chen, Y., Huang, Y. and Zou, X. (2013) Chaotic Invariant Sets of a De-layed Discrete Neural Network of Two Non- Identical Neurons. Science China Mathematics, 56, 1869-1878.
https://doi.org/10.1007/s11425-013-4640-y
[5]  Chen, Y., Li, L., Wu, X. and Wang, F. (2020) The Structural Sta-bility of Maps with Heteroclinic Repellers. International Journal of Bifurcation and Chaos, 30, Article No. 2050207.
https://doi.org/10.1142/S0218127420502077
[6]  Chen, H. and Li, M. (2015) Stability of Symbolic Embeddings for Difference Equations and Their Multidimensional Perturbations. Journal of Differential Equations, 258, 906-918.
https://doi.org/10.1016/j.jde.2014.10.008
[7]  Chen, Y. and Wu, X. (2020) The C1 Persistence of Heteroclinic Re-pellers in Rn. Journal of Mathematical Analysis and Applications, 485, Article ID: 123823.
https://doi.org/10.1016/j.jmaa.2019.123823
[8]  Devaney, R. (1989) An Introduction to Chaotic Dynamical Sys-tems. 2nd Edition, Addison-Wesley Publishing Company, Redwood City.
[9]  Huang, W. and Ye, X. (2002) Deva-ney’s Chaos or 2-Scattering Implies Li-Yorke’s Chaos. Topology and Its Applications, 117, 259-272.
https://doi.org/10.1016/S0166-8641(01)00025-6
[10]  Li, J. and Ye, X. (2016) Recent Development of Chaos The-ory in Topological Dynamics. Acta Mathematica Sinica, English Series, 32, 83-114.
https://doi.org/10.1007/s10114-015-4574-0
[11]  Lu, K., Yang, Q. and Xu, W. (2019) Heteroclinic Cycles and Chaos in a Class of 3D three-Zone Piecewise Affine Systems. Journal of Mathematical Analysis and Applications, 478, 58-81.
https://doi.org/10.1016/j.jmaa.2019.04.070
[12]  Li, T. and Yorke, J. (1975) Period Three Implies Chaos. The American Mathematical Monthly, 82, 985-992.
https://doi.org/10.1080/00029890.1975.11994008
[13]  叶向东, 黄文, 邵松. 拓扑动力系统概论[M]. 北京: 科学出版社, 2008.
[14]  Marotto, F. (1978) Snap-Back Repellers Imply Chaos in Rn. Journal of Mathematical Analysis and Applications, 63, 199-223.
https://doi.org/10.1080/00029890.1975.11994008
[15]  Li, S. (1993) ω-Chaos and Topological Entropy. Transactions of the American Mathematical Society, 339, 243-249.
https://doi.org/10.1090/S0002-9947-1993-1108612-8
[16]  Li, M. and Lyu, M. (2020)9 A Simple Proof for Pre-sistence of Snap-Back Repellers. Journal of Mathematical Analysis and Applications, 352, 669-671.
https://doi.org/10.1016/j.jmaa.2008.11.021
[17]  Li, Z., Shi, Y. and Zhang, C. (2008) Chaos Induced by Heteroclin-ic Cycles Connecting Repellers in Complete Metric Spaces. Chaos, Solitons & Fractals, 36, 746-761.
https://doi.org/10.1016/j.chaos.2006.07.014
[18]  Schweizer, B. and Smital, J. (1994) Measures of Chaos and a Spectral Decomposition of Dynamical Systems on the Interval. Transactions of the American Mathematical Society, 344, 737-754.
https://doi.org/10.1090/S0002-9947-1994-1227094-X
[19]  吴小英, 陈员龙, 王芬. 完备度量空间中的混沌判定[J]. 数学学报: 中文版, 2021, 64(2): 225-230.
https://doi.org/10.3969/j.issn.0583-1431.2021.02.004
[20]  周作领. 符号动力系统[M]. 上海: 上海科技教育出版社, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133