|
Rn上返回排斥子的Lipschitz结构稳定性
|
Abstract:
本文研究欧氏空间上返回排斥子的Lipschitz扰动。设f,g是欧氏空间Rn上的连续自映射,如果f具有返回排斥子且g是f的Lipschitz小扰动,则g也有返回排斥子。因此欧氏空间Rn上的返回排斥子是Lipschitz结构稳定的。
This note is concerned with the effect of small Lipschitz perturbations of a discrete dynamical sys-tem in Rn. Let f, g be continuous map from Rn into itself. If f has snap-back repellers and g is a small Lipschitz perturbations of f, then g has snap-back repellers. In addition, the snap-back repellers are Lipschitz structural stability in Rn.
[1] | Banks, J., Brooks, J., Cairns, G., Davis, G. and Stacey, P. (1992) On Devaney’s Definition of Chaos. The American Mathematical Monthly, 99, 332-334. https://doi.org/10.1080/00029890.1992.11995856 |
[2] | Chen, Y., Huang, T. and Huang, Y. (2014) Complex Dynamics of a Delayed Discrete Neural Network of Two Nonidentical Neurons. Chaos: An Interdisciplinary Journal of Nonlinear Science, 24, Article No. 013108.
https://doi.org/10.1063/1.4861756 |
[3] | Chen, Y., Huang, Y. and Li, L. (2011) The Persistence of Snap-Back Re-peller under Small C1 Perturbations in Banach Spaces. International Journal of Bifurcation and Chaos, 21, 703-710. https://doi.org/10.1063/1.4861756 |
[4] | Chen, Y., Huang, Y. and Zou, X. (2013) Chaotic Invariant Sets of a De-layed Discrete Neural Network of Two Non- Identical Neurons. Science China Mathematics, 56, 1869-1878. https://doi.org/10.1007/s11425-013-4640-y |
[5] | Chen, Y., Li, L., Wu, X. and Wang, F. (2020) The Structural Sta-bility of Maps with Heteroclinic Repellers. International Journal of Bifurcation and Chaos, 30, Article No. 2050207. https://doi.org/10.1142/S0218127420502077 |
[6] | Chen, H. and Li, M. (2015) Stability of Symbolic Embeddings for Difference Equations and Their Multidimensional Perturbations. Journal of Differential Equations, 258, 906-918. https://doi.org/10.1016/j.jde.2014.10.008 |
[7] | Chen, Y. and Wu, X. (2020) The C1 Persistence of Heteroclinic Re-pellers in Rn. Journal of Mathematical Analysis and Applications, 485, Article ID: 123823. https://doi.org/10.1016/j.jmaa.2019.123823 |
[8] | Devaney, R. (1989) An Introduction to Chaotic Dynamical Sys-tems. 2nd Edition, Addison-Wesley Publishing Company, Redwood City. |
[9] | Huang, W. and Ye, X. (2002) Deva-ney’s Chaos or 2-Scattering Implies Li-Yorke’s Chaos. Topology and Its Applications, 117, 259-272. https://doi.org/10.1016/S0166-8641(01)00025-6 |
[10] | Li, J. and Ye, X. (2016) Recent Development of Chaos The-ory in Topological Dynamics. Acta Mathematica Sinica, English Series, 32, 83-114. https://doi.org/10.1007/s10114-015-4574-0 |
[11] | Lu, K., Yang, Q. and Xu, W. (2019) Heteroclinic Cycles and Chaos in a Class of 3D three-Zone Piecewise Affine Systems. Journal of Mathematical Analysis and Applications, 478, 58-81. https://doi.org/10.1016/j.jmaa.2019.04.070 |
[12] | Li, T. and Yorke, J. (1975) Period Three Implies Chaos. The American Mathematical Monthly, 82, 985-992.
https://doi.org/10.1080/00029890.1975.11994008 |
[13] | 叶向东, 黄文, 邵松. 拓扑动力系统概论[M]. 北京: 科学出版社, 2008. |
[14] | Marotto, F. (1978) Snap-Back Repellers Imply Chaos in Rn. Journal of Mathematical Analysis and Applications, 63, 199-223. https://doi.org/10.1080/00029890.1975.11994008 |
[15] | Li, S. (1993) ω-Chaos and Topological Entropy. Transactions of the American Mathematical Society, 339, 243-249.
https://doi.org/10.1090/S0002-9947-1993-1108612-8 |
[16] | Li, M. and Lyu, M. (2020)9 A Simple Proof for Pre-sistence of Snap-Back Repellers. Journal of Mathematical Analysis and Applications, 352, 669-671. https://doi.org/10.1016/j.jmaa.2008.11.021 |
[17] | Li, Z., Shi, Y. and Zhang, C. (2008) Chaos Induced by Heteroclin-ic Cycles Connecting Repellers in Complete Metric Spaces. Chaos, Solitons & Fractals, 36, 746-761. https://doi.org/10.1016/j.chaos.2006.07.014 |
[18] | Schweizer, B. and Smital, J. (1994) Measures of Chaos and a Spectral Decomposition of Dynamical Systems on the Interval. Transactions of the American Mathematical Society, 344, 737-754.
https://doi.org/10.1090/S0002-9947-1994-1227094-X |
[19] | 吴小英, 陈员龙, 王芬. 完备度量空间中的混沌判定[J]. 数学学报: 中文版, 2021, 64(2): 225-230.
https://doi.org/10.3969/j.issn.0583-1431.2021.02.004 |
[20] | 周作领. 符号动力系统[M]. 上海: 上海科技教育出版社, 1997. |