全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

杭州冬季一次污染过程分析
Analysis of a Pollution Process in Hangzhou in Winter

DOI: 10.12677/CCRL.2022.116111, PP. 1066-1075

Keywords: 气溶胶颗粒物,无机水溶性离子,PM2.5
Aerosol Particulate Matter
, Inorganic water-Soluble Ions, PM2.5

Full-Text   Cite this paper   Add to My Lib

Abstract:

采集杭州冬季一次污染事件的气溶胶颗粒物样品,分析了样品中PM2.5,碳质组分(OC、EC)和无机水溶性离子组分,并收集了SO2、NO2等气体前体物和气象数据。结果表明,PM2.5日浓度为79.73~90.76 μg/m3,无机水溶性离子的质量浓度占PM2.5质量浓度的28.30~40.07%。所测组分中总阳离子摩尔浓度水平要高于总阴离子,但阴、阳离子比值较稳定。SOR和NOR的数值体现前体物转化成二次水溶性离子的能力。在本次采样过程中,高湿度,低温导致低臭氧浓度,有利于SO2生成SO42-的非均相化学反应,不利于NO2生成NO3-的光化学反应。NO3-的质量浓度/SO42-的质量浓度>1,说明污染物的来源多为移动源,可能是汽车尾气排放等。OM的质量浓度为21.16~36.72 μg/m3,EC的质量浓度为1.52~3.43 μg/m3。TCA占PM2.5的28.44~44.33%。OC/EC的值为7.65~9.93,均大于2。都体现杭州市遭受严重的二次污染。
Collected aerosol particulate samples from a pollution event in Hangzhou in winter, analyzed PM2.5, carbonaceous components (OC, EC) and inorganic water-soluble ionic components in the samples, and collected gas precursors such as SO2 and NO2 data. The results showed that the daily PM2.5 concentration was 79.73~90.76 μg/m3, and the mass concentration of inorganic water-soluble ions accounted for 28.30~40.07% of the PM2.5 mass concentration, respectively. The molar concentration of total cations in the measured components is higher than the total anions, but the ratio of anions to cations is relatively stable. The values of SOR and NOR reflect the ability of precursors to convert into secondary water-soluble ions. In this sampling process, high humidity and low temperature lead to low ozone concentration, which is beneficial to the heterogeneous chemical reaction of SO2 to generate SO42-, and is not conducive to the photochemical reaction of NO2 to generate NO3-. The mass concentration of NO3-/the mass concentration of SO42- > 1, indicating that the sources of pollutants are mostly mobile sources, which may be automobile exhaust emissions. The mass concentration of OM is 21.16~36.72 μg/m3, and the mass concentration of EC is 1.52~3.43 μg/m3. TCA accounted for 28.44~44.33% of PM2.5 respectively. The mass concentration of OC/EC are7.65~9.93, both of which are greater than 2. All these conclusions reflect the severe secondary pollution disaster in Hangzhou.

References

[1]  Zhou, Y., Fu, J.S., Zhuang, G. and Levy, J.I. (2010) Risk-Based Prioritization among Air Pollution Control Strategies in the Yangtze River Delta, China. Environmental Health Perspectives, 118, 1204-1210.
https://doi.org/10.1289/ehp.1001991
[2]  Cheng, Z., Wang, S., Jiang, J., Fu, Q., Chen, C., Xu, B., et al. (2013) Long-Term Trend of Haze Pollution and Impact of Particulate Matter in the Yangtze River Delta, China. Environmental Pollution, 182, 101-110.
https://doi.org/10.1016/j.envpol.2013.06.043
[3]  叶荣民, 王洪涛, 董敏丽, 尹璐, 王俏丽, 李伟, 李素静. 舟山市大气细颗粒物组分特征及其污染来源解析[J]. 环境工程, 2019, 37(5): 122-128.
[4]  洪盛茂, 焦荔, 徐昶, 等. 杭州市大气灰霾成因及关键污染因子预防控制研究[J]. 科技成果管理与研究, 2014(10): 62-65.
[5]  陈文聪. 杭州地区大气颗粒物污染特征与来源解析[D]: [硕士学位论文]. 杭州: 浙江大学, 2018.
[6]  He, K.B., Yang, F.M., Ma, Y.L., et al. (2001) The Characteristics of PM2.5 in Beijing, China. Atmospheric Environment, 35, 4959-4970.
https://doi.org/10.1016/S1352-2310(01)00301-6
[7]  张剑. 东北中部气溶胶单颗粒的物理化学特性及冬季灰霾形成研究[D]: [硕士学位论文]. 济南: 山东大学, 2018.
[8]  Gray, H.A., Cass, G.R., Huntzicker, J.J., et al. (1986) Characteristics of Atmospheric Organic and Elemental Carbon Particle Concentrations in Los-Angeles. Environmental Science & Technology, 20, 580-589.
https://doi.org/10.1021/es00148a006
[9]  Hazi, Y., Heikkinen, M.S.A. and Cohen, B.S. (2003) Size Distribution of Acidic Sul-fate Ions in Fine Ambient Particulate Matter and Assessment of Source Region Effect. Atmospheric Environment, 37, 5403-5413.
https://doi.org/10.1016/j.atmosenv.2003.08.034
[10]  Kato, N. (1996) Analysis of Structure of Energy Consumption and Dynam-ics of Emission of Atmospheric Species Related to the Global Environmental Change (SOx, NOx, and CO2) in Asia. Atmospheric En-vironment, 30, 757-785.
https://doi.org/10.1016/1352-2310(95)00110-7
[11]  Rohrl, A. and Lammel, G. (2001) Low-Molecular Weight Dicarboxylic Ac-ids and Glyoxylic Acid: Seasonal and Air Mass Characteristics. Environmental Science & Technology, 35, 95-101.
https://doi.org/10.1021/es0000448
[12]  Blando, J.D. and Turpin, B.J. (2000) Secondary Organic Aerosol Formation in Cloud and Fog Droplets: A Literature Evaluation of Plausibility. Atmospheric Environment, 34, 1623-1632.
https://doi.org/10.1016/S1352-2310(99)00392-1
[13]  Sun, Y.L., Wang, Z.F., Fu, P.Q., et al. (2013) Aerosol Composition, Sources and Processes during Wintertime in Beijing China. Atmospheric Chemistry and Physics, 13, 4577-4592.
https://doi.org/10.5194/acp-13-4577-2013
[14]  唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 第二版. 北京: 高等教育出版社, 2006.
[15]  Guo, W., Zhang, Z.Y., Zheng, N.J., et al. (2020) Chemical Characterization and Source Analysis of Water-Soluble Inor-ganic Ions in PM2.5 from a Plateau City of Kunming at Different Seasons. Atmospheric Research, 234, 1-10.
https://doi.org/10.1016/j.atmosres.2019.104687
[16]  Chow, J.C., Watson, J.G., Lu, Z.Q., et al. (1996) Descriptive Analysis of PM2.5 and PM10 at Regionally Representative Locations during SJVAQS/AUSPEX. Atmospheric Environment, 30, 2079-2112.
https://doi.org/10.1016/1352-2310(95)00402-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133