全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于高分辨率资料同化数据对青藏高原极端低温特征分析
Analysis of Extreme Low Temperature Characteristics on the Qinghai-Tibet Plateau Based on High-Resolution Assimilation Dataset

DOI: 10.12677/AG.2022.1211141, PP. 1446-1455

Keywords: 极端气温指数,青藏高原,资料同化数据,霜冻
Extreme Temperature Indices
, Tibet Plateau, Assimilation Dataset, Frost

Full-Text   Cite this paper   Add to My Lib

Abstract:

为进一步研究青藏高原极端低温事件的影响,本文利用WRF模式输出的2015~2020年的逐小时气温高分辨率同化数据计算了两类极端气温指数,研究了其空间分布规律,并根据指数分布规律将青藏高原分为四个区域,研究了高原极端低温的区域特征。结果表明:1) 高原整体呈现出东暖西冷的特征,气温以昆仑山脉与塔里木盆地的交界地带为低值中心,向四周逐渐增暖,霜冻日数和冰封日数也逐步减少。2) 以藏北为主的一区气温最低,以川西为主的四区气温最高,而以青海为主的二区和以藏南为主的三区气温最接近,一区和二区为年内气温变化最为剧烈的两个区域。四个区域霜冻与冰封日数的分布规律与气温相对应,一区最多,三区次之,二区较少,四区最少。3) 四个区域霜冻和冰封日数的季节变化相一致,冬季最多,春季次之,秋季较少,夏季最少。对霜冻日数而言,冬季,不同区域间日数的差异最小;温度越高的区域,霜冻日数的季节差异越明显;冰封日数与霜冻日数相反。
In order to further study the impact of extreme low temperature events on the Qinghai-Tibet Plateau, this paper calculated two types of extreme temperature indices based on the hourly temperature data of WRF reanalysis data from 2015 to 2020, and studied their spatial distribution law. According to the exponential distribution law, the Qinghai-Tibet Plateau was divided into four regions, and the regional characteristics of extreme low temperature on the plateau were studied. Major results are as follows: 1) The plateau as a whole is characterized by warmth in the east and coldness in the west, with temperatures centred on the junction of the Kunlun Mountains and the Tarim Basin as the centre of low values and gradually warming in all directions, with a gradual decrease in the number of frost and freezing days. 2) The lowest temperatures were found in Zone 1, mainly in northern Tibet, and the highest in Zone 4, mainly in western Sichuan, while Zone 2, mainly in Qinghai, and Zone 3, mainly in southern Tibet, were the closest, with Zone 1 and Zone 2 being the two regions with the most drastic temperature changes during the year. The distribution pattern of the number of frost and freezing days in the four regions corresponds to the temperature, with Zone 1 having the most, followed by Zone 3, Zone 2 having less and Zone 4 having the least. 3) The seasonal variation in the number of frost and freeze days is consistent across the four regions, with the highest number in winter, followed by spring, less in autumn and the lowest in summer. For the number of frost days, in winter, the differences in the number of days between regions were minimal; the higher the temperature, the more pronounced the seasonal difference in the number of frost days; and the opposite of frost days for the number of freezing days.

References

[1]  王晓娟, 龚志强, 任福民, 等. 1960-2009年中国冬季区域性极端低温事件的时空特征[J]. 气候变化研究进展, 2012, 8(1): 8-15.
[2]  Yan, Z., Jones, P.D., Davies, T.D., et al. (2002) Trends of Extreme Temperatures in Europe and China Based on Daily Observations. Climatic Change, 53, 355-392.
https://doi.org/10.1023/A:1014939413284
[3]  刘明歆, 李艳, 吕春艳. 中国冬季两类极端低温事件特征及其大气环流成因分析[J]. 高原气象, 2021, 40(3): 603-620.
[4]  韩永秋, 周连童, 黄荣辉. 中国冬半年极端低温事件的时空特征及其与东亚冬季风的关系[J]. 气候与环境研究, 2021, 26(1): 1-17.
[5]  索朗塔杰, 施宁, 王艺橙, 等. 我国冬季极端低温指数的年代际变化特征[J]. 大气科学, 2020, 44(5): 1125-1140.
[6]  王晓君, 马浩. 新一代中尺度预报模式(WRF)国内应用进展[J]. 地球科学进展, 2011, 26(11): 1191-1199.
[7]  肖林鸿, 高艳红, Chen Fei, 等. 青藏高原极端气温的动力降尺度模拟[J]. 高原气象, 2016, 35(3): 574-589.
[8]  马奕, 白磊, 李倩, 等. 区域气候模式在中国西北地区气温和降水长时间序列模拟的误差分析[J]. 冰川冻土, 2016, 38(1): 77-88.
[9]  王树舟, 于恩涛. 基于MIROC/WRF嵌套模式的中国气候降尺度模拟[J]. 气候与环境研究, 2013, 18(6): 681-692.
[10]  陈春艳, 黄海波. WRF模式辐射方案对极端低温天气预报的影响[J]. 干旱区研究, 2016, 33(4): 718-723.
[11]  罗忠红, 黄嘉佑, 江航东. 我国冬季持续极端低温分布特征[J]. 安徽农业科学, 2011, 39(24): 14945-14947.
[12]  蒋卓亚. 中国极端气温及降水事件的时空特征研究[D]: [博士学位论文]. 上海: 华东师范大学, 2017.
[13]  张调风, 杨昭明, 温婷婷, 等. 青藏高原东北部区域持续性低温事件的特征及影响因子分析[J]. 干旱区地理, 2021, 44(4): 897-905.
[14]  陈锐杰, 刘峰贵, 陈琼, 等. 近60年青藏高原东北缘极端气温事件与气温日较差分析——以西宁地区为例[J]. 高原气象, 2018, 37(5): 1188-1198.
[15]  翟盘茂, 刘静. 气候变暖背景下的极端天气气候事件与防灾减灾[J]. 中国工程科学, 2012, 14(9): 55-63+84.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133