全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

那曲地区土壤冻融过程对地表能量通量的影响研究
Effect of Soil Freezing and Thawing Process on Surface Energy Flux in Naqu Area

DOI: 10.12677/AG.2022.1211138, PP. 1409-1426

Keywords: 土壤冻融,地表能量通量,季节变化,能量闭合,波文比
Soil Freezing and Thawing
, Surface Energy Flux, Seasonal Variation, Energy Closure, Bowen Ratio

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究那曲地区土壤冻融过程的土壤水分和热量变化特征,及土壤冻融过程对地表能量通量的影响。本文利用国家青藏高原科学数据中心的青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集中BJ站2013年5月1日至2014年5月31日的观测数据,将土壤冻融过程划分为冻结过程、完全冻结、融化过程和完全融化四个阶段,通过分析不同冻融阶段陆面关键参量的季节和日变化特征,从而获得土壤冻融过程对地表能量通量的影响特征。结果表明:1) 感热通量、波文比(β)和能量闭合率(CR)明显受土壤冻融影响,在冻结过程中,由于土壤冻结地表反照率增大,感热略有增大,而净辐射和潜热减少,则波文比在该阶段增大。土壤液态水冻结释放热量,土壤降温速率受到抑制,地表热通量(G0)被高估,CR大于1;在融化过程中,土壤湿度增大,潜热变大,波文比减小。土壤融化吸收热量,减缓了土壤的增温速率,地表热通量G0被低估,CR则小于1。2) 土壤温度在不同冻融阶段平均日变化基本一致,而土壤湿度平均日变化差异较大,在完全融化阶段土壤湿度变化平缓,但在冻结过程和融化过程中土壤湿度变化幅度较大,夜晚土壤湿度小,白天土壤湿度大,与地表土壤日冻融过程“昼融夜冻”一致。辐射通量白天达到最大值。净辐射(Rn)、感热(H)、潜热(LE)和土壤热通量(G0)日变化相同,均为白天大晚上小;波文比平均日变化在完全冻结阶段 > 融化阶段 > 完全融化阶段 > 冻结阶段;CR在夜间接近于0,在白天接近于1。
In order to study the change characteristics of soil moisture and heat during soil freezing and thawing process in Naqu area, and the influence of soil freezing and thawing process on surface energy flux, based on the observation data of BJ station from May 1, 2013 to May 31, 2014 collected from the high-resolution (hourly) comprehensive observation data of the Tibetan Plateau geo-atmosphere interaction process in the National Qinghai-Tibet Plateau Scientific Data Center, the soil freezing and thawing process is divided into four stages: freezing process, complete freezing, melting process and complete melting. By analyzing the seasonal and diurnal variation char-acteristics of key land surface parameters in different freezing and thawing stages, the influence characteristics of soil freezing and thawing process on surface energy flux are obtained. The results showed that: 1) sensible heat flux, Bowen ratio (β) and energy closure rate (CR) were significantly affected by soil freezing and thawing. During the freezing process, due to the increase of soil surface albedo, sensible heat slightly increased, while net radiation and latent heat decreased, Bowen ratio increased at this stage. Soil liquid water freezing released heat, soil cooling rate was inhibited, surface heat flux (G0) was overestimated, CR > 1. In the melting process, soil moisture increases, latent heat increases and Bowen ratio decreases. Soil melting absorbs heat and slows down the soil warming rate. The surface heat flux G0 is underestimated and CR is less than 1. 2) The average daily variation of soil temperature in different freezing and thawing stages is basically the same, but the average daily variation of soil moisture is quite different, and the change of soil moisture is gentle in the complete thawing stage, but the change of soil moisture is large in the freezing process and thawing process. The soil moisture at night is small and the soil moisture

References

[1]  杨梅学, 姚檀栋, 何元庆. 青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J]. 山地学报, 2002, 20(5): 553-558.
[2]  杨梅学, 姚檀栋, 勾晓华. 青藏公路沿线土壤的冻融过程及水热分布特征[J]. 自然科学进展, 2000(5): 61-68.
[3]  王澄海, 师锐. 青藏高原西部陆面过程特征的模拟分析[J]. 冰川冻土, 2007, 29(1): 73-81.
[4]  杨健, 马耀明. 青藏高原典型下垫面的土壤温湿特征[J]. 冰川冻土, 2012, 34(4): 813-820.
[5]  常娟, 王根绪, 高永恒, 等. 青藏高原多年冻土区积雪对沼泽、草甸浅层土壤水热过程的影响[J]. 生态学报, 2012, 32(23): 7289-7301.
[6]  沈丹, 王磊. 青藏高原土壤湿度对中国夏季降水与气温影响的敏感试验[J]. 气象科技, 2015, 43(6): 1095-1103+1120.
https://doi.org/10.19517/j.1671-6345.2015.06.014
[7]  卓嘎, 陈涛, 周刊社, 等. 2009-2010年青藏高原土壤湿度的时空分布特征[J]. 冰川冻土, 2015, 37(3): 625-634.
[8]  杨梅学, 姚檀栋, Hi-rose Nozomu, Hideyuki Fujii. 青藏高原表层土壤的日冻融循环[J]. 科学通报, 2006, 51(16): 1974-1976.
[9]  万国宁, 杨梅学, 王学佳, 等. 青藏高原中部BJ站土壤湿度不同时间尺度的变化[J]. 土壤通报, 2012, 43(2): 286-293.
https://doi.org/10.19336/j.cnki.trtb.2012.02.006
[10]  葛骏, 余晔, 李振朝, 等. 青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J]. 高原气象, 2016, 35(3): 608-620.
[11]  Gu, L.L., Yao, J.M., Hu, Z.Y., et al. (2015) Comparison of the Surface Energy Budget between Regions of Seasonally Frozen Ground and Permafrost on the Tibetan Plateau. Atmospheric Research, 153, 553-564.
https://doi.org/10.1016/j.atmosres.2014.10.012
[12]  张海宏, 肖宏斌, 祁栋林, 等. 青藏高原湿地土壤冻结、融化期间的陆面过程特征[J]. 气象学报, 2017, 75(3): 481-491.
[13]  谢燕梅, 晋锐, 杨兴国. AMSR-E亮温监测中国近地表冻融循环算法研究[J]. 遥感技术与应用, 2013, 28(2): 182-191.
[14]  Judge, J., Galantowicz, J.F., England, A.W., et al. (1997) Freeze/Thaw Classification for Prairie Soils Using SSM/I Radio Brightnesses. IEEE Transactions on Geoscience & Remote Sensing, 35, 827-832.
[15]  Jin, R., Li, X. and Che, T. (2009) A Decision Tree Algorithm for Surface Soil Freeze/Thaw Classification over China Using SSM/I Brightness Temperature. Remote Sensing of Environment, 113, 2651-2660.
https://doi.org/10.1016/j.rse.2009.08.003
[16]  Smith, N.V., Saatchi, S.S. and Randerson, J.T. (2004) Trends in High Northern Latitude Soil Freeze and Thaw Cycles from 1988 to 2002. Journal of Geophysical Research D: At-mospheres, 109, D12101.
https://doi.org/10.1029/2003JD004472
[17]  Wang, K., Wang, P., Liu, J., et al. (2005) Variation of Surface Albedo and Soil Thermal Parameters with Soil Moisture Content at a Semidesert Site on the Western Tibetan Plateau. Boundary-Layer Meteorology, 116, 117-129.
https://doi.org/10.1007/s10546-004-7403-z
[18]  Li, R., Zhao, L., Wu, T., et al. (2014) Investigating Soil Thermodynamic Parameters of the Active Layer on the Northern Qinghai-Tibetan Plateau. Environmental Earth Sciences, 71, 709-722.
https://doi.org/10.1007/s12665-013-2473-1
[19]  张乐乐, 赵林, 李韧, 等. 青藏高原唐古拉地区暖季土壤水分对地表反照率及其土壤热参数的影响[J]. 冰川冻土, 2016, 38(2): 351-358.
[20]  焦永亮, 李韧, 赵林, 等. 多年冻土区活动层冻融状况及土壤水分运移特征[J]. 冰川冻土, 2014, 36(2): 237-247.
[21]  赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 2000(11): 1205-1211.
[22]  刘杨, 赵林, 李韧. 基于SHAW模型的青藏高原唐古拉地区活动层土壤水热特征模拟[J]. 冰川冻土, 2013, 35(2): 280-290.
[23]  张伟, 周剑, 王根绪, 等. 积雪和有机质土对青藏高原冻土活动层的影响[J]. 冰川冻土, 2013, 35(3): 528-540.
[24]  赵逸舟, 马耀明, 黄镇, 等. 利用TRMM/TMI资料反演青藏高原中部土壤湿度[J]. 高原气象, 2007, 26(5): 952-957.
[25]  李卫朋, 范继辉, 沙玉坤, 等. 藏北高寒草原土壤温度变化与冻融特征[J]. 山地学报, 2014, 32(4): 407-416.
https://doi.org/10.16089/j.cnki.1008-2786.2014.04.007
[26]  Guo, D.L., Yang, M.X. and Wang, H.J. (2011) Characteristics of Land Surface Heat and Water Exchange under Different Soil Freeze/Thaw Conditions over the Central Tibetan Plateau. Hydrological Processes, 25, 2531-2541.
https://doi.org/10.1002/hyp.8025
[27]  郭东林. 青藏高原冻土对地表水热交换的影响和对气候变暖的响应[D]: [博士学位论文]. 北京: 中国科学院, 2012.
[28]  Tanaka, K., Tamagawa, I., Ishikawa, H., et al. (2003) Surface Energy Budget and Closure of the Eastern Tibetan Plateau during the GAME-Tibet IOP 1998. Journal of Hydrology, 283, 169-183.
https://doi.org/10.1016/S0022-1694(03)00243-9
[29]  Bowen, I.S. (1926) The Ratio of Heat Losses by Conduction and by Evaporation from Any Water Surface. Physical Review, 27, 779-787.
https://doi.org/10.1103/PhysRev.27.779

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133