全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

掺杂改性二氧化钛纳米管光催化降污研究进展
Research Progress of Photocatalytic Pollution Reduction by Dopant Modified Titanium Dioxide Nanotubes

DOI: 10.12677/APP.2022.1211070, PP. 603-620

Keywords: 二氧化钛,纳米管,光催化,掺杂,降解
Titanium Dioxide
, Nanotubes, Photocatalysis, Doping, Degradation

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着现代科技和工业的快速发展,水资源受到前所未有的污染威胁。光催化降解由于其有效性和多功能性在目前已经成为了解决水污染问题的主流方案之一,并显示出强大的发展潜力。二氧化钛纳米管及其改性材料被广泛用于光催化降解各种污染物,诸如掺杂和复合材料形式的改性手段已被用于增强其光催化剂的性能。本文综述了最近几年掺杂改性二氧化钛纳米管光催化降解污水的研究进展,介绍了目前常用的掺杂改性方法及其优缺点,从金属和非金属两个类别介绍了常用的掺杂元素,最后通过比较掺杂改性后的降解效果对二氧化钛基纳米管材料降解污水进行了总结和展望。
With the rapid development of modern technology and industry, water resources are threatened by unprecedented pollution. Photocatalytic degradation has become one of the mainstream solutions to water pollution problems due to its effectiveness and versatility, and has shown strong potential for development. Titanium dioxide nanotubes and their modified materials are widely used for photocatalytic degradation of various pollutants, and modification methods such as doping and composite materials have been used to enhance their photocatalytic performance. In this paper, the research progress of photocatalytic degradation of wastewater by dopant modified titanium dioxide nanotube in recent years is reviewed, the commonly used doping modification methods and their advantages and disadvantages are introduced, and the commonly used doping elements are introduced from the two categories of metal and non-metal. Finally, the summary and prospective outlook were reached by comparing the wastewater degradation effect of doping modified titanium dioxide nanotube materials.

References

[1]  Chen, D.J., Cheng, Y.L., Zhou, N., et al. (2020) Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. Journal of Cleaner Production, 268, Article ID: 121725.
https://doi.org/10.1016/j.jclepro.2020.121725
[2]  Lincho, J., Gomes, J., Kobylanski, M., et al. (2021) TiO2 Nanotube Catalysts for Parabens Mixture Degradation by Photocatalysis and Ozone-Based Technologies. Process Safety and Environmental Protection, 152, 601-613.
https://doi.org/10.1016/j.psep.2021.06.044
[3]  Perillo, P.M. and Rodríguez, D.F. (2021) Photocatalysis of Methyl Orange Using Free Standing TiO2 Nanotubes under Solar Light. Environmental Nanotechnology, Monitoring & Management, 16, Article ID: 100479.
https://doi.org/10.1016/j.enmm.2021.100479
[4]  Jo, S., Kim, H. and Lee, T.S. (2021) Decoration of Conju-gated Polyquinoxaline Dots on Mesoporous TiO2 Nanofibers for Visible-Light-Driven Photocatalysis. Polymer, 228, Article ID: 123892.
https://doi.org/10.1016/j.polymer.2021.123892
[5]  Murgolo, S., Franz, S., Arab, H., et al. (2019) Degradation of Emerging Organic Pollutants in Wastewater Effluents by Electrochemical Photocatalysis on Nanostructured TiO2 Meshes. Water Research, 164, Article ID: 114920.
https://doi.org/10.1016/j.watres.2019.114920
[6]  Chandrabose, G., Dey, A., Gaur, S.S., et al. (2021) Re-moval and Degradation of Mixed Dye Pollutants by Integrated Adsorption-Photocatalysis Technique Using 2-D MoS2/TiO2 Nanocomposite. Chemosphere, 279, Article ID: 130467.
https://doi.org/10.1016/j.chemosphere.2021.130467
[7]  Nguyen, V.Q., Mady, A.H., Mahadadalkar, M.A., et al. (2022) Highly Active Z-Scheme Heterojunction Photocatalyst of Anatase TiO2 Octahedra Covered with C-MoS2 Nanosheets for Efficient Degradation of Organic Pollutants under Solar Light. Journal of Colloid and Interface Science, 606, 337-352.
https://doi.org/10.1016/j.jcis.2021.07.128
[8]  Shen, S., Wang, H.B. and Fu, J.J. (2021) A Nanoporous Three-Dimensional Graphene Aerogel Doped with a Carbon Quantum Dot-TiO2 Composite that Exhibits Superior Activity for the Catalytic Photodegradation of Organic Pollutants. Applied Surface Science, 569, Article ID: 151116.
https://doi.org/10.1016/j.apsusc.2021.151116
[9]  Bae, H., Mahadik M.A., Seo, Y., et al. (2021) Palladium Metal Oxide/Hydroxide Clustered Cobalt Oxide Co-Loading on Acid Treated TiO2 Nanorods for Degradation of Organic Pollutants and Salmonella typhimurium Inactivation under Simulated Solar Light. Chemical Engineering Journal, 408, Article ID: 127260.
https://doi.org/10.1016/j.cej.2020.127260
[10]  Xu, D. and Ma, H.L. (2021) Degradation of Rhodamine B in Water by Ultrasound-Assisted TiO2 Photocatalysis. Journal of Cleaner Production, 313, Article ID: 127758.
https://doi.org/10.1016/j.jclepro.2021.127758
[11]  Nakata, K. and Fujishima, A. (2012) TiO2 Photocatalysis: Design and Applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 169-189.
https://doi.org/10.1016/j.jphotochemrev.2012.06.001
[12]  Nazari, M., Golestani, F., Bayati, R. and Eftekhari, B. (2015) Enhanced Photocatalytic Activity in Anodized WO3-Loaded TiO2 Nanotubes. Superlattices and Micro-structures, 80, 91-101.
https://doi.org/10.1016/j.spmi.2014.12.008
[13]  Zhang, G.L., Huang, G.Q., Yang, C., et al. (2021) Efficient Photoelectrocatalytic Degradation of Tylosin on TiO2 Nanotube Arrays with Tunable Phosphorus Dopants. Journal of Environmental Chemical Engineering, 9, Article ID: 104742.
https://doi.org/10.1016/j.jece.2020.104742
[14]  Dao, T.B.T., Hua, T.T.L., Nguyen T.D., et al. (2021) Effec-tiveness of Photocatalysis of MMT-Supported TiO2 and TiO2 Nanotubes for Rhodamine B Degradation. Chemo-sphere, 280, Article ID: 130802.
https://doi.org/10.1016/j.chemosphere.2021.130802
[15]  Mollavali, M., Rohani, S., Elahifard, M., et al. (2021) Band Gap Reduction of (Mo+N) Co-Doped TiO2 Nanotube Arrays with a Significant Enhancement in Visible Light Photo-Conversion: A Combination of Experimental and Theoretical Study. International Journal of Hydrogen Energy, 46, 21475-21498.
https://doi.org/10.1016/j.ijhydene.2021.03.249
[16]  Alcaide, F., Genova, R.V., álvarez, G., et al. (2020) Platinum-Catalyzed Nb-Doped TiO2 and Nb-Doped TiO2 Nanotubes for Hydrogen Generation in Proton Exchange Membrane Water Electrolyzers. International Journal of Hydrogen Energy, 45, 20605-20619.
https://doi.org/10.1016/j.ijhydene.2020.01.057
[17]  Surah, S.S., Vishwakarma, M., Kumar, R., et al. (2019) Tuning the Electronic Band Alignment Properties of TiO2 Nanotubes by Boron Doping. Results in Physics, 12, 1725-1731.
https://doi.org/10.1016/j.rinp.2019.01.081
[18]  Haryński, ?., Karczewski, J., Ryl, J., et al. (2021) Rapid Development of the Photoresponse and Oxygen Evolution of TiO2 Nanotubes Sputtered with Cr Thin Films Realized via Laser Annealing. Journal of Alloys and Compounds, 877, Article ID: 160316.
https://doi.org/10.1016/j.jallcom.2021.160316
[19]  Guo, F., Liu, J.M., Zhang, W.G., et al. (2019) Synthesis of Cu,N-Doped TiO2 Nanotube by a Novel Magnetron Sputtering Method and Its Photoelectric Property. Vacuum, 165, 223-231.
https://doi.org/10.1016/j.vacuum.2019.04.032
[20]  Zafar, Z., Fatima, R. and Kim, J. (2021) Effect of HCl Treatment on Physico-Chemical Properties and Photocatalytic Performance of Fe-TiO2 Nanotubes for Hexa-valent Chromium Reduction and Dye Degradation under Visible Light. Chemosphere, 284, Article ID: 131247.
https://doi.org/10.1016/j.chemosphere.2021.131247
[21]  Nguyen, H.H., Gyawali, G., Martinez, A., et al. (2020) Physicochemical Properties of Cr-Doped TiO2 Nanotubes and Their Application in Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry, 397, Article ID: 112514.
https://doi.org/10.1016/j.jphotochem.2020.112514
[22]  Patel, S.K.S., Jena, P. and Gajbhiye N.S. (2019) Structural and Room-Temperature Ferromagnetic Properties of Pure and Ni-Doped TiO2 Nanotubes. Materials Today: Proceedings, 15, 388-393.
https://doi.org/10.1016/j.matpr.2019.04.098
[23]  Shaban, M., Ahmed, A.M., Shehata, N., et al. (2019) Ni-Doped and Ni/Cr Co-Doped TiO2 Nanotubes for Enhancement of Photocatalytic Degradation of Methylene Blue. Journal of Colloid and Interface Science, 555, 31-41.
https://doi.org/10.1016/j.jcis.2019.07.070
[24]  Wang, B.B., Wu, Z.Z., Wang, S., et al. (2021) Mg/Cu-Doped TiO2 Nanotube Array: A Novel Dual-Function System with Self-Antibacterial Activity and Excellent Cell Compat-ibility. Materials Science & Engineering C, 128, Article ID: 112322.
https://doi.org/10.1016/j.msec.2021.112322
[25]  Puga, M.L., Venturini, J., Guaglianoni, W.C., Ruwer, T.L., et al. (2021) Aluminium-Doped TiO2 Nanotubes with Enhanced Light-Harvesting Properties. Ceramics International, 47, 18358-18366.
https://doi.org/10.1016/j.ceramint.2021.03.157
[26]  Nair, S.B., K, A.J., Joseph, J.A., et al. (2020) Role of Magnesium Doping for Ultrafast Room Temperature Crystallization and Improved Photocatalytic Behavior of TiO2 Nanotubes. Materials Today: Proceedings, 25, 203-207.
https://doi.org/10.1016/j.matpr.2019.12.421
[27]  Guaglianoni, W.C., Ruwer, T.L., Caldeira, L.E.N., et al. (2021) Single-Step Synthesis of Fe-TiO2 Nanotube Arrays with Improved Light Harvesting Properties for Application as Photoactive Electrodes. Materials Science & Engineering B, 263, Article ID: 114896.
https://doi.org/10.1016/j.mseb.2020.114896
[28]  Momeni, M.M. and Motalebian, M. (2021) Chromi-um-Doped Titanium Oxide Nanotubes Grown via One-Step Anodization for Efficient Photocathodic Protection of Stainless Steel. Surface & Coatings Technology, 420, Article ID: 127304.
https://doi.org/10.1016/j.surfcoat.2021.127304
[29]  Rajput, H., Changotra, R., Sangal, V.K. and Dhir, A. (2021) Photoelectrocatalytic Treatment of Recalcitrant Compounds and Bleach Stage Pulp and Paper Mill Effluent Using Au-TiO2 Nanotube Electrode. Chemical Engineering Journal, 408, Article ID: 127287.
https://doi.org/10.1016/j.cej.2020.127287
[30]  Song, E., Kim, Y. and Choi, J. (2019) Anion Additives in Rapid Breakdown Anodization for Nonmetal-Doped TiO2 Nanotube Powders. Electrochemistry Communications, 109, Article ID: 106610.
https://doi.org/10.1016/j.elecom.2019.106610
[31]  Kim, S., Ali, I. and Kim, J. (2019) Phenol Degradation Using an Anodized Graphene-Doped TiO2 Nanotube Composite under Visible Light. Applied Surface Science, Ap-plied Surface Science, 477, 71-78.
https://doi.org/10.1016/j.apsusc.2017.12.024
[32]  Momeni, M.M., Akbarnia, M. and Ghayeb, Y. (2020) Preparation of S-W-Codoped TiO2 Nanotubes and Effect of Various Hole Scavengers on Their Photoelectrochemical Activity: Alcohol Series. International Journal of Hydrogen Energy, 45, 33552-33562.
https://doi.org/10.1016/j.ijhydene.2020.09.112
[33]  Hejazi, S., Mohajernia, S., Wu, Y.H., et al. (2019) Intrinsic Cu Nanoparticle Decoration of TiO2 Nanotubes: A Platform for Efficient Noble Metal Free Photocatalytic H2 Pro-duction. Electrochemistry Communications, 98, 82-86.
https://doi.org/10.1016/j.elecom.2018.11.020
[34]  Dong, Z.B., Ding, D.Y., Li, T. and Ning, C.Q. (2018) Ni-Doped TiO2 Nanotubes Photoanode for Enhanced Photoelectrochemical Water Splitting. Applied Surface Science, 443, 321-328.
https://doi.org/10.1016/j.apsusc.2018.03.031
[35]  Wang, S.Q., Zhang, Z.L., Huo, W.Y., et al. (2020) Preferentially Oriented Ag-TiO2 Nanotube Array Film: An Efficient Visible-Light-Driven Photocatalyst. Journal of Hazardous Materials, 399, Article ID: 123016.
https://doi.org/10.1016/j.jhazmat.2020.123016
[36]  K.A.J., Naduvath, J., Remillard, S.K., et al. (2019) A Simple Method to Fabricate Metal Doped TiO2 Nanotubes. Chemical Physics, 523, 198-204.
https://doi.org/10.1016/j.chemphys.2019.04.028
[37]  Cho, H., Joo, H., Kim, H., et al. (2021) Improved Photoelectrochemical Properties of TiO2 Nanotubes Doped with Er and Effects on Hydrogen Production from Water Splitting. Chemosphere, 267, Article ID: 129289.
https://doi.org/10.1016/j.chemosphere.2020.129289
[38]  Nasirpouri, F., Cheshideh, H., Samardak, A.Y., et al. (2019) Morphology- and Magnetism-Controlled Electrodeposition of Ni Nanostructures on TiO2 Nanotubes for Hybrid Ni/TiO2 Functional Applications. Ceramics International, 45, 11258-11269.
https://doi.org/10.1016/j.ceramint.2019.02.200
[39]  Chokesawatanakit, N., Jutakridsada, P., Boonlue, S., et al. (2021) Ag-Doped Cobweb-Like Structure of TiO2 Nanotubes for Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). Journal of Environmental Chemical Engineering, 9, Article ID: 105843.
https://doi.org/10.1016/j.jece.2021.105843
[40]  Hua, K., Fang, D., Cui, M.M., et al. (2019) In-Situ Deposition of Co Nanoparticles in Discharged TiO2 Nanotube Array with Enhanced Magnetic Property. Journal of Magnetism and Magnetic Materials, 485, 217-223.
https://doi.org/10.1016/j.jmmm.2019.04.029
[41]  Sayegh, S., Abid, M., Tanos, F., et al. (2022) N-Doped TiO2 Nanotubes Synthesized by Atomic Layer Deposition for Acetaminophen Degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 655, Article ID: 130213.
https://doi.org/10.1016/j.colsurfa.2022.130213
[42]  Wang, C.C., Chou, C.Y., Yi, S.R. and Chen, H.D. (2019) Deposition of Heterojunction of ZnO on Hydrogenated TiO2 Nanotube Arrays by Atomic Layer Deposition for Enhanced Photoelectrochemical Water Splitting. International Journal of Hydrogen Energy, 44, 28685-28697.
https://doi.org/10.1016/j.ijhydene.2019.09.133
[43]  Dong, P.M., Cheng, X.D., Jin, Z., et al. (2019) The Green Synthesis of Ag-Loaded Photocatalyst via DBD Cold Plasma Assisted Deposition of Ag Nanoparticles on N-Doped TiO2 Nanotubes. Journal of Photochemistry & Photobiology A: Chemistry, 382, Article ID: 111971.
https://doi.org/10.1016/j.jphotochem.2019.111971
[44]  Sun, M.X., Yao, Y., Zhang, Z.X., et al. (2020) Flame-Assisted Pyrolysis Formation of Cu2O/Cu/TiO2 Nanotube Arrays to Boost Superior Photo-Electrochemical Response. International Journal of Hydrogen Energy, 45, 21493-21501.
https://doi.org/10.1016/j.ijhydene.2020.06.008
[45]  García, P., Ramírez, E., Cortazar, J.C.S., et al. (2021) In-fluence of Ruthenium Doping on UV- and Visible-Light Photoelectrocatalytic Color Removal from Dye Solutions Using a TiO2 Nanotube Array Photoanode. Chemosphere, 267, Article ID: 128925.
https://doi.org/10.1016/j.chemosphere.2020.128925
[46]  Dong, Z.B., Ding, D.Y., Li, T. and Ning, C.Q. (2019) Facile Preparation of Ti3+/Ni Co-Doped TiO2 Nanotubes Photoanode for Efficient Photoelectrochemical Water Splitting. Applied Surface Science, 480, 219-228.
https://doi.org/10.1016/j.apsusc.2019.02.237
[47]  Peighambardoust, N.S., Asl, S.K., Mohammadpour, R. and Asl, S.K. (2018) Band-Gap Narrowing and Electrochemical Properties in N-Doped and Reduced Anodic TiO2 Nanotube Arrays. Electrochimica Acta, 270, 245-255.
https://doi.org/10.1016/j.electacta.2018.03.091
[48]  Huang, J., Dou, L., Li, J.Z., et al. (2021) Excellent Visible Light Responsive Photocatalytic Behavior of N-Doped TiO2 toward Decontamination of Organic Pollutants. Journal of Hazardous Materials, 403, Article ID: 123857.
https://doi.org/10.1016/j.jhazmat.2020.123857
[49]  Dey, K., Vaidya, S., Gobetti, A., et al. (2022) Facile Synthesis of N-Doped Biphasic TiO2 Nanoparticle with Enhanced Visible Light-Driven Photocatalytic Performance. Materials Today Communications, 33, Article ID: 123857.
https://doi.org/10.1016/j.mtcomm.2022.104690
[50]  Peighambardoust, N.S., Asl, S.K. and Maghsoudi, M. (2019) The Effect of Doping Concentration of TiO2 Nanotubes on Energy Levels and Its Direct Correlation with Photocatalytic Activity. Thin Solid Films, 690, Article ID: 137558.
https://doi.org/10.1016/j.tsf.2019.137558
[51]  Yadala, V.D., Nagappagari, L.R., Lee, K., et al. (2021) Opti-mization of N Doping in TiO2 Nanotubes for the Enhanced Solar Light Mediated Photocatalytic H2 Production and Dye Degradation. Environmental Pollution, 269, Article ID: 116170.
https://doi.org/10.1016/j.envpol.2020.116170
[52]  Zhang, X.L., Zhou, J., Gu, Y.F. and Fan, D. (2015) Visi-ble-Light Photocatalytic Activity of N-Doped TiO2 Nanotube Arrays on Acephate Degradation. Journal of Nano-materials, 2015, Article ID: 527070.
https://doi.org/10.1155/2015/527070
[53]  Wang, T., Ma, Q., Gao, S. and Huang, M.S. (2020) Enhanced Thermal Stability and Photocatalytic Property of Highly Ordered Anodized TiO2 Nanotube Arrays with Interstitial Nitrogen as Dominant Point Defect. Journal of Materials Science: Materials in Electronics, 31, 8403-8412.
https://doi.org/10.1007/s10854-020-03375-x
[54]  Wang, J.S., Wang, Z.Z., Li, H.Y., et al. (2010) Visible Light-Driven Nitrogen Doped TiO2 Nanoarray Films: Preparation and Photocatalytic Activity. Journal of Alloys and Compounds, 494, 372-377.
https://doi.org/10.1016/j.jallcom.2010.01.049
[55]  Lai, Y.K., Huang, J.Y., Zhang, H.F., et al. (2010) Nitro-gen-Doped TiO2 Nanotube Array Films with Enhanced Photocatalytic Activity under Various Light Sources. Journal of Hazardous Materials, 184, 855-863.
https://doi.org/10.1016/j.jhazmat.2010.08.121
[56]  Xia, L., Yang, Y., Cao, Y., et al. (2019) Porous N-Doped TiO2 Nanotubes Arrays by Reverse Oxidation of TiN and Their Visible-Light Photocatalytic Activity. Surface & Coatings Technology, 365, 237-241.
https://doi.org/10.1016/j.surfcoat.2018.06.033
[57]  Alkorbi, A.S., Javed, H.M.A., Hussain, S., et al. (2022) Solar Light-Driven Photocatalytic Degradation of Methyl Blue by Carbon-Doped TiO2 Nanoparticles. Optical Ma-terials, 127, Article ID: 112259.
https://doi.org/10.1016/j.optmat.2022.112259
[58]  Suárez, O., Collado, S., Oulego, P., et al. (2017) Gra-phene-Family Nanomaterials in Wastewater Treatment Plants. Chemical Engineering Journal, 313, 121-135.
https://doi.org/10.1016/j.cej.2016.12.022
[59]  Wu, G., Nishikawa, T., Ohtani, B., et al. (2007) Synthesis and Characterization of Carbon-Doped TiO2 Nanostructures with Enhanced Visible Light Response. Chemistry of Ma-terials, 19, 4530-4537.
https://doi.org/10.1021/cm071244m
[60]  Park, J.H., Kim, S. and Bard, A.J. (2006) Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6, 24-28.
https://doi.org/10.1021/nl051807y
[61]  Hu, L.S., Huo, K.F., Chen, R.S., et al. (2011) Re-cyclable and High-Sensitivity Electrochemical Biosensing Platform Composed of Carbon-Doped TiO2 Nanotube Arrays. Analytical Chemistry, 83, 8138-8144.
https://doi.org/10.1021/ac201639m
[62]  Li, Y.C., Wang, Y.Q., Kong, J.H., et al. (2015) Synthesis and Char-acterization of Carbon Modified TiO2 Nanotube and Photocatalytic Activity on Methylene Blue under Sunlight. Applied Surface Science, 344, 176-180.
https://doi.org/10.1016/j.apsusc.2015.03.085
[63]  Yang, Y., Zhou, B.C., Wang, L.B., et al. (2022) In-Situ Grown N, S Co-Doped Graphene on TiO2 Fiber for Artificial Photosynthesis of H2O2 and Mechanism Study. Applied Catalysis B: Environmental, 317, Article ID: 121788.
https://doi.org/10.1016/j.apcatb.2022.121788
[64]  Esmaili, H., Kowsari, E., Tafreshi, S.S., et al. (2022) TiO2 Nanoarrays Modification by a Novel Cobalt-Heteroatom Doped Graphene Complex for Photoelectrochemical Water Splitting: An Experimental and Theoretical Study. Journal of Molecular Liquids, 356, Article ID: 118960.
https://doi.org/10.1016/j.molliq.2022.118960
[65]  Temur, E., Eryi?it, M., Do?an, H.?., et al. (2022) Electro-chemical Fabrication and Reductive Doping of Electrochemically Reduced Graphene Oxide Decorated with TiO2 Electrode with Highly Enhanced Photoresponse under Visible Light. Applied Surface Science, 518, Article ID: 152150.
https://doi.org/10.1016/j.apsusc.2021.152150
[66]  Wang, Y., Li, Z., Tian, Y.F., et al. (2014) A Facile Way to Fabricate Graphene Sheets on TiO2 Nanotube Arrays for Dye-Sensitized Solar Cell Applications. Journal of Materials Science, 49, 7991-7999.
https://doi.org/10.1007/s10853-014-8506-7
[67]  Liu, C.B., Teng, Y.R., Liu, R.H., et al. (2011) Fabrication of Graphene Films on TiO2 Nanotube Arrays for Photocatalytic Application. Carbon, 49, 5312-5320.
https://doi.org/10.1016/j.carbon.2011.07.051
[68]  Ge, M.Z., Huang, J.Y., Zhang, K.Q., et al. (2015) TiO2 Nanotube Arrays Loaded with Reduced Graphene Oxide Films: Facile Hybridization and Promising Photo-Catalytic Application. Journal of Materials Chemistry A, 7, 3491-3499.
https://doi.org/10.1039/C4TA06354F
[69]  Jiang, L., Luo, Z.F., Li, Y.Z., et al. (2020) Morphology- and Phase-Controlled Synthesis of Visible-Light-Activated S-Doped TiO2 with Tunable S4+/S6+ Ratio. Chemical Engi-neering Journal, 402, Article ID: 125549.
https://doi.org/10.1016/j.cej.2020.125549
[70]  Han, C., Pelaez, M., Likodimos, V., et al. (2011) Innovative Visible Light-Activated Sulfur Doped TiO2 Films for Water Treatment. Applied Catalysis B: Environmental, 107, 77-87.
https://doi.org/10.1016/j.apcatb.2011.06.039
[71]  Momeni, M.M., Ghayeb, Y. and Ghonchegi, Z. (2015) Visible Light Activity of Sulfur-Doped TiO2 Nanostructure Photoelectrodes Prepared by Single-Step Elec-tronchemical Anodizing Process. Journal of Solid State Electrochemistry, 19, 1359-1366.
https://doi.org/10.1007/s10008-015-2758-2
[72]  Yang, C., Shang, S.S. and Li, X.Y. (2021) Fabrication of Sulfur-Doped TiO2 Nanotube Array as a Conductive Interlayer of PbO2 Anode for Efficient Electrochemical Oxi-dation of Organic Pollutants. Separation and Purification Technology, 258, Article ID: 118035.
https://doi.org/10.1016/j.seppur.2020.118035
[73]  Momeni, M.M., Taghineiad, M., Ghayeb, Y., et al. (2019) Preparation of Various Boron-Doped TiO2 Nanostructures by in Situ Anodizing Method and Investigation of Their Photoelectrochemical and Photocathodic Protection Properties. Journal of Iranian Chemical Society, 16, 1839-1851.
https://doi.org/10.1007/s13738-019-01658-7
[74]  Bessegato, G.G., Cardoso, J.C. and Zanoni, M.V.B. (2015) Enhanced Photoelectrocatalytic Degradation of an Acid Dye with Boron-Doped TiO2 Nanotube Anodes. Catalysis Today, 240, 100-106.
https://doi.org/10.1016/j.cattod.2014.03.073
[75]  Wang, J.P., Huang, B.B., Wang, Z.Y., et al. (2011) Synthesis and Characterization of C, N-Codoped TiO2 Nanotubes/Nanorods with Visible-Light Activity. Rare Metals, 30, 161-165.
https://doi.org/10.1007/s12598-011-0261-1
[76]  Zheng, P., Zhou, W., Wang, Y.B., et al. (2020) N-Doped Graphene-Wrapped TiO2 Nanotubes with Stable Surface Ti3+ for Visible-Light Photocatalysis. Applied Surface Science, 512, Article ID: 144549.
https://doi.org/10.1016/j.apsusc.2019.144549
[77]  Jia, M.Y., Yang, Z.H., Xu, H.Y., et al. (2020) Integrating N and F Co-Doped TiO2 Nanotubes with ZIF-8 as Photoelectrode for Enhanced Photo-Electrocatalytic Degradation of Sulfamethazine. Chemical Engineering Journal, 388, Article ID: 124388.
https://doi.org/10.1016/j.cej.2020.124388
[78]  Teng, W., Xu, J., Yu, J.H., et al. (2022) Experimental and Quantum Chemical Investigation on the Mechanism of Photocatalytic Degradation of 2,4,6-Trichlorophenol by Ag/TiO2 Nanotube Electrode. Journal of Electroanalytical Chemistry, 921, Article ID: 116662.
https://doi.org/10.1016/j.jelechem.2022.116662
[79]  Kong, J.H., Song, C.X., Zhang, W., et al. (2017) En-hanced Visible-Light-Active Photocatalytic Performances on Ag Nanoparticles Sensitized TiO2 Nanotube Arrays. Superlattices and Microstructures, 109, 579-587.
https://doi.org/10.1016/j.spmi.2017.05.050
[80]  Lin, P., Nie, L.F., Wei, W.W., et al. (2020) One-Step and Ligand-Free Modification of Au Nanoparticles on Highly Ordered TiO2 Nanotube Arrays for Effective Photoelec-trocatalytic Decontamination. Industrial & Engineering Chemistry Research, 59, 668-675.
https://doi.org/10.1021/acs.iecr.9b04911
[81]  Tamilselvan, A., Durgalakshmi, D., Rakkesh, R.A. and Bala-kumar, S. (2022) Enhanced Photocatalytic Activity of TiO2 Nanotubes Arrays Decorated with Ag and Pt Nanopar-ticles. Materials Today: Proceedings, 64, 1822-1831.
https://doi.org/10.1016/j.matpr.2022.06.135
[82]  Yurdakal, S., ?etinkaya, S., ?zcan, L., et al. (2021) Partial Photoelectrocatalytic Oxidation of 3-Pyridinemethanol by Pt, Au and Pd Loaded TiO2 Nanotubes on Ti Plate. Ca-talysis Today, 380, 248-258.
https://doi.org/10.1016/j.cattod.2020.11.003
[83]  Yao, Y., Sun, M.X., Zhang, Z.H., et al. (2019) In Situ Syn-thesis of MoO3/Ag/TiO2 Nanotube Arrays for Enhancement of Visible-Light Photoelectrochemical Performance. International Journal of Hydrogen Energy, 44, 9348-9358.
https://doi.org/10.1016/j.ijhydene.2019.02.100
[84]  Chen, Y., Gao, J.Z., Shi, Q.W., et al. (2022) In Situ Elec-trochemical Reduced Au Loaded Black TiO2 Nanotubes for Visible Light Photocatalysis. Journal of Alloys and Compounds, 901, Article ID: 163562.
https://doi.org/10.1016/j.jallcom.2021.163562
[85]  Gautam, J., Yang, J.M. and Yang, B.L. (2022) Transition Metal Co-Doped TiO2 Nanotubes Decorated with Pt Nanoparticles on Optical Fibers as an Efficient Photocatalyst for the Decomposition of Hazardous Gaseous Pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 643, Article ID: 128786.
https://doi.org/10.1016/j.colsurfa.2022.128786
[86]  Eadi, S.B., Kim, S., Jeong, S.W. and Jeno, H.W. (2017) Novel Preparation of Fe Doped TiO2 Nanoparticles and Their Application for Gas Sensor and Photocatalytic Deg-radation. Advances in Materials Science and Engineering, 2017, Article ID: 2191659.
https://doi.org/10.1155/2017/2191659
[87]  Yang, X.J., Wang, S., Sun, H.M., et al. (2015) Preparation and Photocatalytic Performance of Cu-Doped TiO2 Nanoparticles. Transactions of Nonferrous Metals Society of China, 25, 504-509.
https://doi.org/10.1016/S1003-6326(15)63631-7
[88]  Latif, S., Tahir, K., Khan, A.U., et al. (2022) Green Synthesis of Mn-Doped TiO2 Nanoparticles and Investigating the Influence of Dopant Concentration on the Pho-tocatalytic Activity. Inorganic Chemistry Communications, 146, Article ID: 110091.
https://doi.org/10.1016/j.inoche.2022.110091
[89]  Hajjaji, A., Trabelsi, K., Atyaoui, A., et al. (2014) Photo-catalytic Activity of Cr-Doped TiO2 Nanoparticles Deposited on Porous Multicrystalline Silicon Films. Nanoscale Research Letters, 9, Article ID: 543.
https://doi.org/10.1186/1556-276X-9-543
[90]  Cheng, J.H., Lu, T., Huang, S.Q., et al. (2021) Recovery of Cobalt from Spent Lithium-Ion Batteries as the Dopant of TiO2 Photocatalysts for Boosting Ciprofloxacin Degra-dation. Journal of Cleaner Production, 316, Article ID: 128279.
https://doi.org/10.1016/j.jclepro.2021.128279
[91]  Yang, X.Y., Min, Y.X., Li, S.B., et al. (2018) Conductive Nb-Doped TiO2 Thin Films with Whole Visible Absorption to Degrade Pollutants. Catalysis Science & Technology, 8, 1357-1365.
https://doi.org/10.1039/C7CY02614E
[92]  Trejo, M., Guzmán, S.R.H., Manriquez, M.Z., et al. (2019) Removal of Aqueous Chromium and Environmental CO2 by Using Photocatalytic TiO2 Doped with Tungsten. Journal of Hazardous Materials, 370, 196-202.
https://doi.org/10.1016/j.jhazmat.2018.05.008
[93]  Wang, S.Q., Zhang, Z.L., Huo, W.Y., et al. (2021) Sin-gle-Crystal-Like Black Zr-TiO2 Nanotube Array Film: An Efficient Photocatalyst for Fast Reduction of Cr(VI). Chemical Engineering Journal, 403, Article ID: 126331.
https://doi.org/10.1016/j.cej.2020.126331
[94]  Wang, Q.Y., Jin, R.C., Zhang, M. and Gao, S.M. (2017) Sol-vothermal Preparation of Fe-Doped TiO2 Nanotube Arrays for Enhancement in Visible Light Induced Photoelec-trochemical Performance. Journal of Alloys and Compounds, 690, 139-144.
https://doi.org/10.1016/j.jallcom.2016.07.281
[95]  Zhang, J., Yang, C., Li, S.J., et al. (2020) Preparation of Fe3+ Doped High-Ordered TiO2 Nanotubes Arrays with Visible Photocatalytic Activities. Nanomaterials (Basel), 10, Article 2107.
https://doi.org/10.3390/nano10112107
[96]  Su, Y.F., Wu, Z., Wu, Y.N., et al. (2015) Acid Or-ange II Degradation through a Heterogeneous Fenton-Like Reaction Using Fe-TiO2 Nanotube Arrays as a Photo-catalyst. Journal of Materials Chemistry A, 3, 8537-8544.
https://doi.org/10.1039/C5TA00839E
[97]  Rajabi, M. and Abrinaei, F. (2019) High Nonlinear Optical Re-sponse of Lanthanum-Doped TiO2 Nanorod Arrays under Pulsed Laser Irradiation at 532 nm. Optics and Laser Technology, 109, 131-138.
https://doi.org/10.1016/j.optlastec.2018.07.075
[98]  Sun, P.P., Liu, L., Cui, S.C. and Liu, J.G. (2014) Synthesis, Characterization of Ce-Doped TiO2 Nanotubes with High Visible Light Photocatalytic Activity. Catalysis Letters, 144, 2107-2113.
https://doi.org/10.1007/s10562-014-1377-3
[99]  Zhao, H., Zheng, K.Y., Sheng, Y., et al. (2014) Template Synthesis and Luminescence Properties of TiO2:Eu3+ Nanotubes. Journal of Solid State Chemistry, 210, 138-143.
https://doi.org/10.1016/j.jssc.2013.11.016
[100]  Zhang, H., Zhang, Q.S., Lv, Y.Q., et al. (2018) Up-conversion Er-Doped TiO2 Nanorod Arrays for Perovskite Solar Cells and the Performance Improvement. Materials Research Bulletin, 106, 346-352.
https://doi.org/10.1016/j.materresbull.2018.06.014
[101]  Chobba, M.B., Messaoud, M., Weththimuni, M.L., et al. (2019) Preparation and Characterization of Photocatalytic Gd-Doped TiO2 Nanoparticles for Water Treatment. Environmental Science and Pollution Research, 26, 32734-32745.
https://doi.org/10.1007/s11356-019-04680-7
[102]  Parnicka, P., Mazierski, P., Lisowski, W., et al. (2019) A New Simple Approach to Prepare Rare-Earth Metals-Modified TiO2 Nanotube Arrays Photoactive under Visible Light: Surface Properties and Mechanism Investigation. Results in Physics, 12, 412-423.
https://doi.org/10.1016/j.rinp.2018.11.073
[103]  Gong, Z., Li, X.Q., Zhang, Z.C., et al. (2021) Anodic Oxidation of TC4 Substrate to Synthesize Ce-Doped TiO2 Nanotube Arrays with Enhanced Photocatalytic Performance. Journal of Electronic Materials, 50, 3276-3282.
https://doi.org/10.1007/s11664-021-08821-y
[104]  Bayan, E.M., Lupeiko, T.G., Pustovaya, L.E., et al. (2020) Zn-F Co-Doped TiO2 Nanomaterials: Synthesis, Structure and Photocatalytic Activity. Journal of Alloys and Com-pounds, 822, Article ID: 153662.
https://doi.org/10.1016/j.jallcom.2020.153662
[105]  Feng, X.T., Gu, L.F., Wang, N.Y., et al. (2023) Fe/N Co-Doped Nano-TiO2 Wrapped Mesoporous Carbon Spheres for Synergetically Enhanced Adsorption and Photo-catalysis. Journal of Materials Science & Technology, 135, 54-64.
https://doi.org/10.1016/j.jmst.2022.06.038
[106]  Zhang, S.S., Peng, F., Wang, H.J., et al. (2011) Electrodeposi-tion Preparation of Ag Loaded N-Doped TiO2 Nanotube Arrays with Enhanced Visible Light Photocatalytic Per-formance. Catalysis Communications, 12, 689-693.
https://doi.org/10.1016/j.catcom.2011.01.001
[107]  Cai, J.J., Zhou, M.H., Xu, X. and Du, X.D. (2020) Stable Boron and Cobalt Co-Doped TiO2 Nanotubes Anode for Efficient Degradation of Organic Pollutants. Journal of Hazardous Materials, 396, Article ID: 122723.
https://doi.org/10.1016/j.jhazmat.2020.122723
[108]  Kiziltas, H. (2022) Fabrication and Characterization of Photoelectrode B-Co/TiO2 Nanotubes for Effective Photoelectrochemical Degradation of Rhodamine B. Optical Materials, 123, Article ID: 111926.
https://doi.org/10.1016/j.optmat.2021.111926
[109]  Zhao, Y.X., Zhu, L.J., Yu, Y.M., et al. (2020) Facile One-Pot Preparation of Ti3+, N Co-Doping TiO2 Nanotube Arrays and Enhanced Photodegradation Activities by Tuning Tube Lengths and Diameters. Catalysis Today, 355, 563-572.
https://doi.org/10.1016/j.cattod.2019.06.051
[110]  Cho, H., Joo, H., Kim, H., et al. (2021) Enhanced Photo-catalytic Activity of TiO2 Nanotubes Decorated with Erbium and Reduced Graphene Oxide. Applied Surface Science, 565, Article ID: 150459.
https://doi.org/10.1016/j.apsusc.2021.150459

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133