全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Schedule for Reducing the Use of Peat and the Possibilities of Replacing It with Forest Chips in Energy Production in Finland

DOI: 10.4236/jsbs.2022.124007, PP. 99-115

Keywords: Biomass, Supply, Market, Economics, Heat, Combined Heat and Power Generation (CHP)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Between 2018 and 2020, an average of 15 TWh of energy peat was consumed in Finland. Energy peat is used in 260 boilers in Finland, which produce district heat and heat and steam for industry, as well as electricity as cogeneration (CHP) in connection with district heating and industrial heat production. Peat accounts for 3% - 5% of the energy sources used in Finland, but its importance has been greater in terms of security of supply. With current use in accordance with the 2018-2020 average, the emissions from peat are almost 6 Mt CO2 per year in Finland, which is 15% of emissions from the energy sector. In this study, the technical limitations related to peat burning, economic limitations related to the availability of biomass, and socio-economic limitations related to the regional economy are reviewed. By 2040, the technical minimum use of peat will fall to 2 TWh. The techno-economical potential may be even lower, but due to socio-economic objectives, peat production will not be completely ceased. The reduction in the minimum share assumes that old peat boilers are replaced with new biomass boilers or are alternatively replaced by other forms of heat production. Based on the biomass reserves, the current use of peat can be completely replaced by forest chips, but regional challenges may occur along the coast and in southern Finland. It is unlikely that the current demand for all peat will be fully replaced by biomass when part of CHP production is replaced by heat production alone and combustion with waste heat sources.

References

[1]  Schipfer, F., et al. (2022) Status of and Expectations for Flexible Bioenergy to Support Resource Efficiency and to Accelerate the Energy Transition. Renewable and Sustainable Energy Reviews, 158, Article ID: 112094.
https://doi.org/10.1016/j.rser.2022.112094
[2]  Joelsson, J.M. and Gustavsson, L. (2010) Reduction of CO2 Emission and Oil Dependency with Biomass-Based Polygeneration. Biomass and Bioenergy, 34, 967-984.
https://doi.org/10.1016/j.biombioe.2010.02.005
[3]  Johansson, V., Lehtveer, M. and Göransson, L. (2019) Biomass in the Electricity System: A Complement to Variable Renewables or a Source of Negative Emissions? Energy, 168, 532-541.
https://doi.org/10.1016/j.energy.2018.11.112
[4]  Jåstad, E.O., Bolkesjø, T.F., Trømborg, E. and Rørstad, P.K. (2020) The Role of Woody Biomass for Reduction of Fossil GHG Emissions in the Future North European Energy Sector. Applied Energy, 274, Article ID: 115360.
https://doi.org/10.1016/j.apenergy.2020.115360
[5]  Keller, V., et al. (2018) Coal-to-Biomass Retrofit in Alberta—Value of Forest Residue Bioenergy in the Electricity System. Renewable Energy, 125, 373-383.
https://doi.org/10.1016/j.renene.2018.02.128
[6]  Banja, M., Sikkema, R, Jégard, M., Motola, V. and Dallemand, J.-F. (2019) Biomass for Energy in the EU—The Support Framework. Energy Policy, 131, 215-228.
https://doi.org/10.1016/j.enpol.2019.04.038
[7]  Lindroos, T.J., Mäki, E., Koponen, K., Hannula, I., Kiviluoma, J. and Raitila, J. (2021) Replacing Fossil Fuels with Bioenergy in District Heating—Comparison of Technology Options. Energy, 231, Article ID: 120799.
https://doi.org/10.1016/j.energy.2021.120799
[8]  Väisänen, S., Silvan, N., Ihalainen, A. and Soukka, R. (2013) Peat Production in High-Emission Level Peatlands—A Key to Reducing Climatic Impacts? Energy & Environment, 24, 757-778.
https://doi.org/10.1260/0958-305X.24.5.757
[9]  Soimakallio, S., et al. (2020) Turpeen Rooli ja sen Käytöstä Luopumisen Vaikutukset Suomessa. Sitra.
https://media.sitra.fi/2020/06/31150012/turpeen-rooli-ja-sen-kaytosta-luopumisen-vaikutukset-suomessa-tekninen-raportti.pdf
[10]  Greenhouse Gases. Official Statistics of Finland.
http://www.stat.fi/til/khki/2020/khki_2020_2021-05-21_tie_001_en.html
[11]  Korhonen, T., Hirvonen, P., Rämet, J. and Karjalainen, S. (2021) Turvetyöryhmän Loppuraportti.
http://urn.fi/URN:ISBN:978-952-327-856-1
[12]  World Energy Council (2013) Strategic Insight.
https://www.worldenergy.org/assets/images/imported/2013/10/WER_2013_6_Peat.pdf
[13]  Energy Supply and Consumption. Official Statistics of Finland.
https://www.stat.fi/til/ehk/2021/02/index_en.html
[14]  Official Statistics of Finland (2021) Production of Electricity and Heat.
https://www.stat.fi/til/salatuo/index_en.html
[15]  Keto, M. (2010) Energiamuotojen Kerroin. Raportti Ympäristöministeriölle. Aalto-Yliopisto, Espoo.
https://www.ymparisto.fi/download/noname/%7BA6ABCFF7-55FA-412C-A0C7-FEE5CC0A2F24%7D/30744
[16]  Selvitys Turpeen Energiakäytön Kehityksestä Suomessa. Raportti työ-ja elinkeinoministeriölle (2020).
https://afry.com/sites/default/files/2020-08/tem_turpeen_kayton_analyysi_loppuraportti_0.pdf
[17]  Metsähakkeen Kysynnän ja Kehitys ja Riittävyys Suomessa. Raportti työ-ja elinkeinoministeriölle ja Huoltovarmuuskeskukselle (2021).
https://afry.com/sites/default/files/2021-05/afry_metsahakkeen_kysynnan_kehitys_ja_riittavyys_suomessa_loppuraportti.pdf
[18]  Anttila, P., Nivala, V., Hirvelä, H., Laitila, J. and Sikanen, L. (2021) Metsähakkeen Riittävyys Energiaturpeen Korvaajana. LUKE, Natural Resources Institute Finland.
https://jukuri.luke.fi/handle/10024/547499
[19]  (2021) Commercial Fellings 2020. Natural Resources Institute Finland (Luke), Natural Resources Institute Finland.
https://www.luke.fi/en/statistics/commercial-fellings/commercial-fellings-2020
[20]  Official Statistics of Finland (2021) Structural Business and Financial Statement Statistics.
https://www.stat.fi/til/yrti/index_en.html
[21]  (2022) Wood in Energy Generation 2021. Natural Resources Institute Finland (Luke), Natural Resources Institute Finland.
https://stat.luke.fi/en/wood-energy-generation-2020-provisional_en
[22]  (2020) Hukkalämpöjen Hyödyntäminen. Toiminta Kaukolämpöyrityksissä Katsaus.
https://energia.fi/files/5369/Hukkalampokyselyn_Yht
[23]  Holm, P. and Tyynilä, J. (2020) Energiaturpeen Käytön Lopettaminen: Alan Yritysten Menetykset. Taloustutkimus Oy.
https://www.koneyrittajat.fi/media/Julkinen/Liitteet/tiedoteliitteet/LOP_Turve%20II.pdf
[24]  Valonen, M., Huovari, J., Sajeva, M, and Alimov, N. (2021) Turvetoimialan Aluetalousvaikutukset.
https://www.ptt.fi/media/julkaisut/tyopaperit/ptt_tp203.pdf
[25]  Bioenergiary (2018) Kotimaisten polttoaineiden toimintaympäristö ja käyttöarviot 2030 Saakka “Omaa Energiaa”.
[26]  Koljonen, T., et al. (2020) Hiilineutraali Suomi 2035—Skenaariot ja Vaikutusarviot. VTT Technology 366.
https://www.vtt.fi/inf/pdf/technology/2020/T366.pdf
[27]  Koljonen, T., et al. (2017) Energia ja Ilmastostrategian Vaikutusarviot: Yhteenvetoraportti.
http://tietokayttoon.fi/julkaisu?pubid=16902
[28]  Anttila, P., et al. (2018) Regional Balance of Forest Chip Supply and Demand in Finland in 2030. Silva Fennica, 52, Article ID: 9902.
https://doi.org/10.14214/sf.9902
[29]  Public Register of Documents, European Parliament (2020) Proposal for a Regulation of the European Parliament and of the Council Establishing the Just Transition Fund. COM_COM(2020)0022.
https://www.europarl.europa.eu/RegistreWeb/search/simple.htm?relations=DOSSIER%23%23COM(2020)0022

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133