Changes in vascular stiffness are associated with the development and progression of many diseases, especially in cardiovascular disease. However, the effect of vascular stiffness on the endothelial cells (ECs) is not fully understood. Therefore, this study aims to determine the gene expression changes of ECs cultured on the matrices with different stiffness (1 kPa and 40 kPa, respectively) by RNA-seq, thereby broadening the knowledge between mechanics and biology. We obtained 1775 differentially expressed genes (DEGs) by RNA-seq, with 450 up-regulated and 1325 down-regulated DEGs in ECs cultured on soft matrix (1 kPa) compared to those cultured on stiff matrix (40 kPa). After that, we performed a series of functional enrichment analyses based on DEGs and found that DEGs were enriched in many signaling pathways like adhesion junction. Furthermore, transcription factor (TF) target gene prediction analysis and protein-protein interaction (PPI) analysis were also conducted. We found that mechanotransduction signaling related TFs such as BRD4 are involved in. And in the PPI analysis, some genes encoding extracellular matrix proteins such as fibronectin 1 (FN1) were identified as the hub genes. In order to confirm the RNA-seq results, we performed real-time qPCR analysis on the genes of interest, including FN1, collagen α2 (IV) chain, matrix metalloproteinase-14 and integrin α5, and found that the expression levels of all these genes were down-regulated on soft matrix, suggesting that soft matrix caused by pathological conditions may directly attenuate vascular barrier function. This study offers the insights about the effects of physical stimulation on cells, paving a way for vascular tissue engineering, regenerative medicine, disease modeling and therapies.
References
[1]
Chaudhuri, O., Cooper-White, J., Janmey, P.A., Mooney, D.J. and Shenoy, V.B. (2020) Effects of Extracellular Matrix Viscoelasticity on Cellular Behaviour. Nature, 584, 535-546. https://doi.org/10.1038/s41586-020-2612-2
[2]
Vining, K.H. and Mooney, D.J. (2017) Mechanical Forces Direct Stem Cell Behaviour in Development and Regeneration. Nature Reviews Molecular Cell Biology, 18, 728-742. https://doi.org/10.1038/nrm.2017.108
[3]
Lampi, M.C. and Reinhart-King, C.A. (2018) Targeting Extracellular Matrix Stiffness to Attenuate Disease: From Molecular Mechanisms to Clinical Trials. Science Translational Medicine, 10, eaao0475. https://doi.org/10.1126/scitranslmed.aao0475
[4]
Matsumoto, T., Abe, H., Ohashi, T., Kato, Y. and Sato, M. (2002) Local Elastic Modulus of Atherosclerotic Lesions of Rabbit Thoracic Aortas Measured by Pipette Aspiration Method. Physiological Measurement, 23, 635-648. https://doi.org/10.1088/0967-3334/23/4/304
[5]
Tian, B., Ding, X., Song, Y., Chen, W., Liang, J., Yang, L., Fan, Y., Li, S. and Zhou, Y. (2019) Matrix Stiffness Regulates SMC Functions via TGF-β Signaling Pathway. Biomaterials, 221, Article ID: 119407. https://doi.org/10.1016/j.biomaterials.2019.119407
[6]
Shao, Y., Saredy, J., Yang, W.Y., Sun, Y., Lu, Y., Saaoud, F., Drummer, C., Johnson, C., Xu, K., Jiang, X., Wang, H. and Yang, X. (2020) Vascular Endothelial Cells and Innate Immunity. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, e138-e152. https://doi.org/10.1161/ATVBAHA.120.314330
[7]
Heusch, G., Libby, P., Gersh, B., Yellon, D., Böhm, M., Lopaschuk, G. and Opie, L. (2014) Cardiovascular Remodelling in Coronary Artery Disease and Heart Failure. The Lancet, 383, 1933-1943. https://doi.org/10.1016/S0140-6736(14)60107-0
[8]
Janmey, P.A., Fletcher, D.A. and Reinhart-King, C.A. (2020) Stiffness Sensing by Cells. Physiological Reviews, 100, 695-724. https://doi.org/10.1152/physrev.00013.2019
[9]
Haynes, B.A., Yang, L.F., Huyck, R.W., Lehrer, E.J., Turner, J.M., Barabutis, N., Correll, V.L., Mathiesen, A., McPheat, W., Semmes, O.J. and Dobrian, A.D. (2019) Endothelial-to-Mesenchymal Transition in Human Adipose Tissue Vasculature Alters the Particulate Secretome and Induces Endothelial Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 2168-2191. https://doi.org/10.1161/ATVBAHA.119.312826
[10]
Gimbrone, M.A. and García-Cardeña, G. (2013) Vascular Endothelium, Hemodynamics, and the Pathobiology of Atherosclerosis. Cardiovascular Pathology, 22, 9-15. https://doi.org/10.1016/j.carpath.2012.06.006
[11]
Souilhol, C., Serbanovic-Canic, J., Fragiadaki, M., Chico, T.J., Ridger, V., Roddie, H. and Evans, P.C. (2020) Endothelial Responses to Shear Stress in Atherosclerosis: A Novel Role for Developmental Genes. Nature Reviews Cardiology, 17, 52-63. https://doi.org/10.1038/s41569-019-0239-5
[12]
Bonnans, C., Chou, J. and Werb, Z. (2014) Remodelling the Extracellular Matrix in Development and Disease. Nature Reviews Molecular Cell Biology, 15, 786-801. https://doi.org/10.1038/nrm3904
[13]
Chen, W., Tian, B., Liang, J., Yu, S., Zhou, Y. and Li, S. (2019) Matrix Stiffness Regulates the Interactions between Endothelial Cells and Monocytes. Biomaterials, 221, Article ID: 119362. https://doi.org/10.1016/j.biomaterials.2019.119362
[14]
Hu, M., Jia, F., Huang, W.P., Li, X., Hu, D.F., Wang, J., Ren, K.F., Fu, G.S., Wang, Y.B. and Ji, J. (2021) Substrate Stiffness Differentially Impacts Autophagy of Endothelial Cells and Smooth Muscle Cells. Bioactive Materials, 6, 1413-1422. https://doi.org/10.1016/j.bioactmat.2020.10.013
[15]
Bao, M., Chen, Y., Liu, J.T., Bao, H., Wang, W.B., Qi, Y.X. and Lv, F. (2022) Extracellular Matrix Stiffness Controls VEGF(165) Secretion and Neuroblastoma Angiogenesis via the YAP/RUNX2/SRSF1 Axis. Angiogenesis, 25, 71-86. https://doi.org/10.1007/s10456-021-09804-7
[16]
Andresen Eguiluz, R.C., Kaylan, K.B., Underhill, G.H. and Leckband, D.E. (2017) Substrate Stiffness and VE-Cadherin Mechano-Transduction Coordinate to Regulate Endothelial Monolayer Integrity. Biomaterials, 140, 45-57. https://doi.org/10.1016/j.biomaterials.2017.06.010
[17]
Urbanczyk, M., Zbinden, A. and Schenke-Layland, K. (2022) Organ-Specific Endothelial Cell Heterogenicity and Its Impact on Regenerative Medicine and Biomedical Engineering Applications. Advanced Drug Delivery Reviews, 186, Article ID: 114323. https://doi.org/10.1016/j.addr.2022.114323
[18]
Xu, S., Ilyas, I., Little, P.J., Li, H., Kamato, D., Zheng, X., Luo, S., Li, Z., Liu, P., Han, J., Harding, I.C., Ebong, E.E., Cameron, S.J., Stewart, A.G. and Weng, J. (2021) Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacological Reviews, 73, 924-967. https://doi.org/10.1124/pharmrev.120.000096
[19]
Bolger, A.M., Lohse, M. and Usadel, B. (2014) Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics, 30, 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
[20]
Kim, D., Langmead, B. and Salzberg, S.L. (2015) HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nature Methods, 12, 357-360. https://doi.org/10.1038/nmeth.3317
[21]
Roberts, A., Trapnell, C., Donaghey, J., Rinn, J.L. and Pachter, L. (2011) Improving RNA-Seq Expression Estimates by Correcting for Fragment Bias. Genome Biology, 12, R22. https://doi.org/10.1186/gb-2011-12-3-r22
[22]
Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J. and Pachter, L. (2010) Transcript Assembly and Quantification by RNA-Seq Reveals Unannotated Transcripts and Isoform Switching during Cell Differentiation. Nature Biotechnology, 28, 511-515. https://doi.org/10.1038/nbt.1621
[23]
Anders, S., Pyl, P.T. and Huber, W. (2015) HTSeq—A Python Framework to Work with High-Throughput Sequencing Data. Bioinformatics, 31, 166-169. https://doi.org/10.1093/bioinformatics/btu638
[24]
Anders, S. and Huber, W. (2012) Differential Expression of RNA-Seq Data at the Gene Level—The DESeq Package.
[25]
Ringnér, M. (2008) What Is Principal Component Analysis? Nature Biotechnology, 26, 303-304. https://doi.org/10.1038/nbt0308-303
[26]
Abaricia, J.O., Shah, A.H. and Olivares-Navarrete, R. (2021) Substrate Stiffness Induces Neutrophil Extracellular Trap (NET) Formation through Focal Adhesion Kinase Activation. Biomaterials, 271, Article ID: 120715. https://doi.org/10.1016/j.biomaterials.2021.120715
[27]
Haas, A.J., Zihni, C., Ruppel, A., Hartmann, C., Ebnet, K., Tada, M., Balda, M.S. and Matter, K. (2020) Interplay between Extracellular Matrix Stiffness and JAM-A Regulates Mechanical Load on ZO-1 and Tight Junction Assembly. Cell Reports, 32, Article ID: 107924. https://doi.org/10.1016/j.celrep.2020.107924
[28]
Claesson-Welsh, L., Dejana, E. and McDonald, D.M. (2021) Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Molecular Medicine, 27, 314-331. https://doi.org/10.1016/j.molmed.2020.11.006
[29]
Niu, N., Xu, S., Xu, Y., Little, P.J. and Jin, Z.-G. (2019) Targeting Mechanosensitive Transcription Factors in Atherosclerosis. Trends in Pharmacological Sciences, 40, 253-266. https://doi.org/10.1016/j.tips.2019.02.004
[30]
Zhubanchaliyev, A., Temirbekuly, A., Kongrtay, K., Wanshura, L.C. and Kunz, J. (2016) Targeting Mechanotransduction at the Transcriptional Level: YAP and BRD4 Are Novel Therapeutic Targets for the Reversal of Liver Fibrosis. Frontiers in Pharmacology, 7, Article No. 462. https://doi.org/10.3389/fphar.2016.00462
[31]
Jarman, A.P. and Groves, A.K. (2013) The Role of Atonal Transcription Factors in the Development of Mechanosensitive Cells. Seminars in Cell & Developmental Biology, 24, 438-447. https://doi.org/10.1016/j.semcdb.2013.03.010
[32]
Galea, G.L., Paradise, C.R., Meakin, L.B., Camilleri, E.T., Taipaleenmaki, H., Stein, G.S., Lanyon, L.E., Price, J.S., van Wijnen, A.J. and Dudakovic, A. (2020) Mechanical Strain-Mediated Reduction in RANKL Expression Is Associated with RUNX2 and BRD2. Gene, 763, Article ID: 100027. https://doi.org/10.1016/j.gene.2020.100027
[33]
Dupont, S. and Wickström, S.A. (2022) Mechanical Regulation of Chromatin and Transcription. Nature Reviews Genetics, 23, 624-643. https://doi.org/10.1038/s41576-022-00493-6
[34]
Lacolley, P., Regnault, V., Segers, P. and Laurent, S. (2017) Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiological Reviews, 97, 1555-1617. https://doi.org/10.1152/physrev.00003.2017
[35]
Chirinos, J.A., Segers, P., Hughes, T. and Townsend, R. (2019) Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 74, 1237-1263. https://doi.org/10.1016/j.jacc.2019.07.012
[36]
Jia, G. and Sowers, J.R. (2021) Hypertension in Diabetes: An Update of Basic Mechanisms and Clinical Disease. Hypertension, 78, 1197-1205. https://doi.org/10.1161/HYPERTENSIONAHA.121.17981
[37]
Souilhol, C., Serbanovic-Canic, J., Fragiadaki, M., Chico, T.J., Ridger, V., Roddie, H. and Evans, P.C. (2020) Endothelial Responses to Shear Stress in Atherosclerosis: A Novel Role for Developmental Genes. Nature Reviews Cardiology, 17, 52-63. https://doi.org/10.1038/s41569-019-0239-5
[38]
Warkala, M., Chen, D., Ramirez, A., Jubran, A., Schonning, M., Wang, X., Zhao, H. and Astrof, S. (2021) Cell-Extracellular Matrix Interactions Play Multiple Essential Roles in Aortic Arch Development. Circulation Research, 128, e27-e44. https://doi.org/10.1161/CIRCRESAHA.120.318200
[39]
Kikuchi-Taura, A., Okinaka, Y., Saino, O., Takeuchi, Y., Ogawa, Y., Kimura, T., Gul, S., Claussen, C., Boltze, J. and Taguchi, A. (2021) Gap Junction-Mediated Cell-Cell Interaction between Transplanted Mesenchymal Stem Cells and Vascular Endothelium in Stroke. Stem Cells, 39, 904-912. https://doi.org/10.1002/stem.3360
[40]
Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., Elvassore, N. and Piccolo, S. (2011) Role of YAP/TAZ in Mechanotransduction. Nature, 474, 179-183. https://doi.org/10.1038/nature10137
[41]
Zhou, Q., Zhang, Y., Wang, B., Zhou, W., Bi, Y., Huai, W., Chen, X., Chen, Y., Liu, Z., Liu, X. and Zhan, Z. (2020) KDM2B Promotes IL-6 Production and Inflammatory Responses through Brg1-Mediated Chromatin Remodeling. Cellular & Molecular Immunology, 17, 834-842. https://doi.org/10.1038/s41423-019-0251-z
[42]
Chang, L., Azzolin, L., Di Biagio, D., Zanconato, F., Battilana, G., Lucon Xiccato, R., Aragona, M., Giulitti, S., Panciera, T., Gandin, A., Sigismondo, G., Krijgsveld, J., Fassan, M., Brusatin, G., Cordenonsi, M. and Piccolo, S. (2018) The SWI/SNF Complex Is a Mechanoregulated Inhibitor of YAP and TAZ. Nature, 563, 265-269. https://doi.org/10.1038/s41586-018-0658-1
[43]
Siebel, C. and Lendahl, U. (2017) Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiological Reviews, 97, 1235-1294. https://doi.org/10.1152/physrev.00005.2017
[44]
He, Y., Deng, B., Liu, S., Luo, S., Ning, Y., Pan, X., Wan, R., Chen, Y., Zhang, Z., Jiang, J., Xu, H., Xia, M. and Li, J. (2022) Myeloid Piezo1 Deletion Protects Renal Fibrosis by Restraining Macrophage Infiltration and Activation. Hypertension, 79, 918-931. https://doi.org/10.1161/HYPERTENSIONAHA.121.18750
[45]
Wettschureck, N., Strilic, B. and Offermanns, S. (2019) Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiological Reviews, 99, 1467-1525. https://doi.org/10.1152/physrev.00037.2018
[46]
Castillo, E.A., Lane, K.V. and Pruitt, B.L. (2020) Micromechanobiology: Focusing on the Cardiac Cell-Substrate Interface. Annual Review of Biomedical Engineering, 22, 257-284. https://doi.org/10.1146/annurev-bioeng-092019-034950
[47]
Cooper, J. and Giancotti, F.G. (2019) Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell, 35, 347-367. https://doi.org/10.1016/j.ccell.2019.01.007