Solid waste is a promising renewable fuel that can substitute
conventional fuel. According to the researchers, thermoconversion
of solid waste such as municipal solid waste or residual household waste (RHW)
is beneficial to society. However, due to its heterogeneity, the gasification
of RHW is more complex. This review article
discusses the steps that RHW must undergo before its thermoconversion and the
state of the art of solid waste gasification. First, characterisation methods
of RHW are surveyed. Second, the properties ofRHW, the production lines of
refuse derived fuel (RDF) from RHW, the influence of RDF composition and operating
parameters such as equivalence ratio and temperature are reviewed. Moreover,
RDF gasification products, scientific barriers and proposed solutions are
evaluated. In conclusion, concerning emissions, costs and technical aspects related to
each thermochemical process, it can be said that gasification is a promising
technique for the recovery of RHW. However, studies on cogasification of waste
and biomass on a pilot-industrial scale are still scarce and synergistic
effects of this cogasification need to be clarified.
References
[1]
Ahmad, A.A., Zawawi, N.A., Kasim, F.H., Inayat, A. and Khasri, A. (2016) Assessing the Gasification Performance of Biomass: A Review on Biomass Gasification Process Conditions, Optimization and Economic Evaluation. Renewable and Sustainable Energy Reviews, 53, 1333-1347. https://doi.org/10.1016/j.rser.2015.09.030
[2]
Sipra, A.T., Gao, N. and Sarwar, H. (2018) Municipal Solid Waste (MSW) Pyrolysis for Bio-Fuel Production: A Review of Effects of MSW Components and Catalysts. Fuel Processing Technology, 175, 131-147. https://doi.org/10.1016/j.fuproc.2018.02.012
[3]
Gioutsos, D.M., Blok, K., van Velzen, L. and Moorman, S. (2018) Cost-Optimal Electricity Systems with Increasing Renewable Energy Penetration for Islands across the Globe. Applied Energy, 226, 437-449. https://doi.org/10.1016/j.apenergy.2018.05.108
[4]
Stendardo, S., Foscolo, P.U., Nobili, M. and Scaccia, S. (2016) High Quality Syngas Production via Steam-Oxygen Blown Bubbling Fluidised Bed Gasifier. Energy, 103, 697-708. https://doi.org/10.1016/j.energy.2016.03.011
[5]
Ojha, D.K. and Vinu, R. (2018) Copyrolysis of Lignocellulosic Biomass with Waste Plastics for Resource Recovery. In: Bhaskar, T., Pandey, A., et al., Eds., Waste Biorefinery, Elsevier, Amsterdam, 349-391. https://doi.org/10.1016/B978-0-444-63992-9.00012-4
[6]
Nguyen, T.S., He, S., Raman, G. and Seshan, K. (2016) Catalytic Hydro-Pyrolysis of Lignocellulosic Biomass over Dual Na2CO3/Al2O3 and Pt/Al2O3 Catalysts Using n-Butane at Ambient Pressure. Chemical Engineering Journal, 299, 415-419. https://doi.org/10.1016/j.cej.2016.04.104
[7]
Venkatakrishnan, R.A.V.K., Degenstein, J.C., Smeltz, A.D., Delgass, W.N. and Ribeiro, F.H. (2013) High-Pressure Fast-Pyrolysis, Fast-Hydropyrolysis and Catalytic Hydrodeoxygenation of Cellulose: Production of Liquid Fuel from Biomass. Green Chemistry, 2013, Article ID: 207890. https://doi.org/10.1039/c3gc41558a
[8]
Tristan, J., Pedersen, S. and Manhice, H. (2020) The Hidden Dynamics of Household Waste Separation: An Anthropological Analysis of User Commitment, Barriers, and the Gaps between a Waste System and Its Users. Journal of Cleaner Production, 242, 116285. https://doi.org/10.1016/j.jclepro.2019.03.281
[9]
Andersson, C. and Stage, J. (2018) Direct and Indirect Effects of Waste Management Policies on Household Waste Behaviour: The Case of Sweden. Waste Management, 76, 19-27. https://doi.org/10.1016/j.wasman.2018.03.038
[10]
Kumar, A. and Samadder, S.R. (2017) An Empirical Model for Prediction of Household Solid Waste Generation Rate—A Case Study of Dhanbad, India. Waste Management, 68, 3-15. https://doi.org/10.1016/j.wasman.2017.07.034
[11]
Munir, M.T., Mardon, I., Al-Zuhair, S., Shawabkeh, A. and Saqib, N.U. (2019) Plasma Gasification of Municipal Solid Waste for Waste-to-Value Processing. Renewable and Sustainable Energy Reviews, 116, Article ID: 109461. https://doi.org/10.1016/j.rser.2019.109461
[12]
Lu, J.S., Chang, Y., Poon, C.S. and Lee, D.J. (2020) Slow Pyrolysis of Municipal Solid Waste (MSW): A Review. Bioresource Technology, 312, Article ID: 123615. https://doi.org/10.1016/j.biortech.2020.123615
[13]
Mukherjee, C., Denney, J., Mbonimpa, E.G., Slagley, J. and Bhowmik, R. (2020) A Review on Municipal Solid Waste-to-Energy Trends in the USA. Renewable and Sustainable Energy Reviews, 119, Article ID: 109512. https://doi.org/10.1016/j.rser.2019.109512
[14]
Lee, U., Chung, J.N. and Ingley, H.A. (2014) High-Temperature Steam Gasification of Municipal Solid Waste, Rubber, Plastic and Wood. Energy and Fuels, 28, 4573-4587. https://doi.org/10.1021/ef500713j
[15]
Ray, R., Taylor, R. and Chapman, C. (2012) The Deployment of an Advanced Gasification Technology in the Treatment of Household and Other Waste Streams. Process Safety and Environmental Protection, 90, 213-220. https://doi.org/10.1016/j.psep.2011.06.013
[16]
Guérin, J., Charles, M., Lavoie, S. and Bourgeois, N. (2018) The Importance of Characterizing Residual Household Waste at the Local Level: A Case Study of Saguenay, Quebec (Canada). Waste Management, 77, 341-349. https://doi.org/10.1016/j.wasman.2018.04.019
[17]
http://www.vie-publique.fr
[18]
Ouadi, M., Fivga, A., Jahangiri, H., Saghir, M. and Hornung, A. (2019) A Review of the Valorization of Paper Industry Wastes by Thermochemical Conversion. Industrial and Engineering Chemistry Research, 58, 15914-15929. https://doi.org/10.1021/acs.iecr.9b00635
[19]
Gabbar, H.A., Aboughaly, M. and Ayoub, N. (2018) Comparative Study of MSW Heat Treatment Processes and Electricity Generation. Journal of the Energy Institute, 91, 481-488. https://doi.org/10.1016/j.joei.2017.04.009
[20]
Malkow, T. (2004) Novel and Innovative Pyrolysis and Gasification Technologies for Energy Efficient and Environmentally Sound MSW Disposal. Waste Management, 24, 53-79. https://doi.org/10.1016/S0956-053X(03)00038-2
[21]
Vlcek, J., Velicka, M., Jancar, D., Burda, J. and Blahusková, V. (2016) Environmental Effects Modelling of Thermal Processes at Waste Incineration. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 3527-3533. https://doi.org/10.1080/15567036.2016.1161680
[22]
Werle, S. and Wilk, R.K. (2010) A Review of Methods for the Thermal Utilization of Sewage Sludge: The Polish Perspective. Renewable Energy, 35, 1914-1919. https://doi.org/10.1016/j.renene.2010.01.019
[23]
Zhang, Q., Dor, L., Yang, W. and Blasiak, W. (2011) Eulerian Model for Municipal Solid Waste Gasification in a Fixed-Bed Plasma Gasification Melting Reactor. Energy and Fuels, 25, 4129-4137. https://doi.org/10.1021/ef200383j
[24]
Saleh, A.R., Sudarmanta, B., Fansuri, H. and Muraza, O. (2019) Improved Municipal Solid Waste Gasification Efficiency Using a Modified Downdraft Gasifier with Variations of Air Input and Preheated Air Temperature. Energy and Fuels, 33, 11049-11056. https://doi.org/10.1021/acs.energyfuels.9b02486
[25]
Zhang, Q., Dor, L., Zhang, L., Yang, W. and Blasiak, W. (2012) Performance Analysis of Municipal Solid Waste Gasification with Steam in a Plasma Gasification Melting Reactor. Applied Energy, 98, 219-229. https://doi.org/10.1016/j.apenergy.2012.03.028
[26]
He, M., Xiao, B., Hu, Z., Liu, S., Guo, X. and Luo, S. (2009) Syngas Production from Catalytic Gasification of Waste Polyethylene: Influence of Temperature on Gas Yield and Composition. International Journal of Hydrogen Energy, 34, 1342-1348. https://doi.org/10.1016/j.ijhydene.2008.12.023
[27]
Jacobsen, R., Buysse, J. and Gellynck, X. (2013) Cost Comparison between Private and Public Collection of Residual Household Waste: Multiple Case Studies in the Flemish Region of Belgium. Waste Management, 33, 3-11. https://doi.org/10.1016/j.wasman.2012.08.015
[28]
Sahimaa, O., Hupponen, M., Horttanainen, M. and Sorvari, J. (2015) Method for Residual Household Waste Composition Studies. Waste Management, 46, 3-14. https://doi.org/10.1016/j.wasman.2015.08.032
[29]
Dahlén, L., Vukicevic, S., Meijer, J.-E. and Lagerkvist, A. (2007) Comparison of Different Collection Systems for Sorted Household Waste in Sweden. Waste Management, 27, 1298-1305. https://doi.org/10.1016/j.wasman.2006.06.016
[30]
Pio, D.T., Tarelho, L.A.C., Tavares, A.M.A., Matos, M.A.A. and Silva, V. (2020) Co-Gasification of Refused Derived Fuel and Biomass in a Pilot-Scale Bubbling Fluidized Bed Reactor. Energy Conversion and Management, 206, Article ID: 112476. https://doi.org/10.1016/j.enconman.2020.112476
[31]
Caputo, A.C. and Pelagagge, P.M. (2002) RDF Production Plants: I Design and Costs. Applied Thermal Engineering, 22, 423-437. https://doi.org/10.1016/S1359-4311(01)00100-4
[32]
Aluri, S., Syed, A., Flick, D.W., Muzzy, J.D. and Sievers, C. (2018) Pyrolysis and Gasification Studies of Model Refuse Derived Fuel (RDF) Using Thermogravimetric Analysis. Fuel Processing Technology, 179, 154-166. https://doi.org/10.1016/j.fuproc.2018.06.010
[33]
Barba, D., Prisciandaro, M., Salladini, A. and Mazziotti, G. (2011) The Gibbs Free Energy Gradient Method for RDF Gasification Modelling. Fuel, 90, 1402-1407. https://doi.org/10.1016/j.fuel.2010.12.022
[34]
Widjaya, E.R., Chen, G., Bowtell, L. and Hills, C. (2018) Gasification of Nonwoody Biomass: A Literature Review. Renewable and Sustainable Energy Reviews, 89, 184-193. https://doi.org/10.1016/j.rser.2018.03.023
[35]
Rong, L., Maneerung, T., Ng, J.C., Neoh, K.G., Bay, B.H., Tong, Y.W., Dai, Y. and Wang, C.H. (2015) Co-Gasification of Sewage Sludge and Woody Biomass in a Fixed-Bed Downdraft Gasifier: Toxicity Assessment of Solid Residues. Waste Management, 36, 241-255. https://doi.org/10.1016/j.wasman.2014.11.026
[36]
Chen, Z., Wang, M., Jiang, E., Wang, D., Zhang, K. and Ren, Y. (2018) Pyrolysis of Torrefied Biomass. Trends in Biotechnology, 36, 1287-1298. https://doi.org/10.1016/j.tibtech.2018.07.005
[37]
Niu, M., Huang, Y., Jin, B. and Wang, X. (2013) Simulation of Syngas Production from Municipal Solid Waste Gasification in a Bubbling Fluidized Bed Using Aspen Plus. Industrial and Engineering Chemistry Research, 52, 14768-14775. https://doi.org/10.1021/ie400026b
[38]
Lopez, G., Artetxe, M., Amutio, M., Alvarez, J., Bilbao, J. and Olazar, M. (2018) Recent Advances in the Gasification of Waste Plastics. A Critical Overview. Renewable and Sustainable Energy Reviews, 82, 576-596. https://doi.org/10.1016/j.rser.2017.09.032
[39]
ADEME (2001) Pyrolyse et gazéification de la biomasse pour la production d’electricite. 155.
[40]
Aznar, M.P., Caballero, M.A., Sancho, J.A. and Francés, E. (2006) Plastic Waste Elimination by Co-Gasification with Coal and Biomass in Fluidized Bed with Air in Pilot Plant. Fuel Processing Technology, 87, 409-420. https://doi.org/10.1016/j.fuproc.2005.09.006
[41]
http://www.valmet.com
[42]
Magdziarz, A. and Werle, S. (2014) Analysis of the Combustion and Pyrolysis of Dried Sewage Sludge by TGA and MS. Waste Management, 34, 174-179. https://doi.org/10.1016/j.wasman.2013.10.033
[43]
Byun, Y., Namkung, W., Cho, M., Chung, J.W., Kim, Y.S., Lee, J.H., Lee, C.R. and Hwang, S.M. (2010) Demonstration of Thermal Plasma Gasification/Vitrification for Municipal Solid Waste Treatment. Environmental Science and Technology, 44, 6680-6684. https://doi.org/10.1021/es101244u
[44]
Ahmed, R., Sinnathambi, C.M. and Eldmerdash, U. (2014) Gasification of Refinery Sludge in an Updraft Reactor for Syngas Production. AIP Conference Proceedings, 1621, 684-690. https://doi.org/10.1063/1.4898542
[45]
Gotze, R., Pivnenko, K., Boldrin, A., Scheutz, C. and Astrup, T.F. (2016) Physico-Chemical Characterisation of Material Fractions in Residual and Source-Segregated Household Waste in Denmark. Waste Management, 54, 13-26. https://doi.org/10.1016/j.wasman.2016.05.009
[46]
Dolezalová, L., Benesová, L. and Závodská, A. (2013) The Changing Character of Household Waste in the Czech Republic between 1999 and 2009 as a Function of Home Heating Methods. Waste Management, 33, 1950-1957. https://doi.org/10.1016/j.wasman.2013.04.017
[47]
Zhou, H., Long, Y., Meng, A., Li, Q. and Zhang, Y. (2015) Classification of Municipal Solid Waste Components for Thermal Conversion in Waste-to-Energy Research. Fuel, 145, 151-157. https://doi.org/10.1016/j.fuel.2014.12.015
[48]
Paul, W.R.E. and Brunner, H. (1986) Alternative Methods for the Analysis of Municipal Solid Waste. Waste Management & Research, 4, 147-160. https://doi.org/10.1177/0734242X8600400116
[49]
Zhou, H., Meng, A., Long, Y., Li, Q. and Zhang, Y. (2014) An Overview of Characteristics of Municipal Solid Waste Fuel in China: Physical, Chemical Composition and Heating Value. Renewable and Sustainable Energy Reviews, 36, 107-122. https://doi.org/10.1016/j.rser.2014.04.024
[50]
Al-Jarallah, R. and Aleisa, E. (2014) A Baseline Study Characterizing the Municipal Solid Waste in the State of Kuwait. Waste Management, 34, 952-960. https://doi.org/10.1016/j.wasman.2014.02.015
[51]
Riber, C., Petersen, C. and Christensen, T.H. (2009) Chemical Composition of Material Fractions in Danish Household Waste. Waste Management, 29, 1251-1257. https://doi.org/10.1016/j.wasman.2008.09.013
[52]
Eisted, R. and Christensen, T.H. (2011) Characterization of Household Waste in Greenland. Waste Management, 31, 1461-1466. https://doi.org/10.1016/j.wasman.2011.02.018
[53]
Essonanawe, M., Bang, M., Gotze, R., Pivnenko, K., Petersen, C., Scheutz, C. and Fruergaard, T. (2015) Municipal Solid Waste Composition: Sampling Methodology, Statistical Analyses, and Case Study Evaluation. Waste Management, 36, 12-23. https://doi.org/10.1016/j.wasman.2014.11.009
[54]
Dahlén, L. and Lagerkvist, A. (2008) Methods for Household Waste Composition Studies. Waste Management, 28, 1100-1112. https://doi.org/10.1016/j.wasman.2007.08.014
[55]
Miezah, K., Obiri-Danso, K., Kádár, Z., Fei-Baffoe, B. and Mensah, M.Y. (2015) Municipal Solid Waste Characterization and Quantification as a Measure towards Effective Waste Management in Ghana. Waste Management, 46, 15-27. https://doi.org/10.1016/j.wasman.2015.09.009
[56]
Hanc, A., Novak, P., Dvorak, M., Habart, J. and Svehla, P. (2011) Composition and Parameters of Household Bio-Waste in Four Seasons. Waste Management, 31, 1450-1460. https://doi.org/10.1016/j.wasman.2011.02.016
[57]
Thanh, N.P., Matsui, Y. and Fujiwara, T. (2010) Household Solid Waste Generation and Characteristic in a Mekong Delta City, Vietnam. Journal of Environmental Management, 91, 2307-2321. https://doi.org/10.1016/j.jenvman.2010.06.016
[58]
Bary, A.I., Cogger, C.G., Sullivan, D.M. and Myhre, E.A. (2005) Characterization of Fresh Yard Trimmings for Agricultural Use. Bioresource Technology, 96, 1499-1504. https://doi.org/10.1016/j.biortech.2004.11.011
[59]
Steubing, B., Zah, R. and Ludwig, C. (2012) Heat, Electricity, or Transportation? The Optimal Use of Residual and Waste Biomass in Europe from an Environmental Perspective. Environmental Science and Technology, 46, 164-171. https://doi.org/10.1021/es202154k
[60]
Johansson, A.-C., Sandstrom, L., Ohrman, O.G.W. and Jilvero, H. (2018) Copyrolysis of Woody Biomass and Plastic Waste in Both Analytical and Pilot Scale. Journal of Analytical and Applied Pyrolysis, 134, 102-113 https://doi.org/10.1016/j.jaap.2018.05.015
[61]
Sarc, R. and Lorber, K.E. (2013) Production, Quality and Quality Assurance of Refuse Derived Fuels (RDFs). Waste Management, 33, 1825-1834. https://doi.org/10.1016/j.wasman.2013.05.004
[62]
Hervy, M., Remy, D., Dufour, A. and Mauviel, G. (2019) Air-Blown Gasification of Solid Recovered Fuels (SRFs) in Lab-Scale Bubbling Fluidized-Bed: Influence of the Operating Conditions And of the SRF Composition. Energy Conversion and Management, 181, 584-592. https://doi.org/10.1016/j.enconman.2018.12.052
[63]
Couto, N., Silva, V., Monteiro, E., Teixeira, S., Chacartegui, R., Bouziane, K., Brito, P.S. and Rouboa, A. (2015) Numerical and Experimental Analysis of Municipal Solid Wastes Gasification Process. Applied Thermal Engineering, 78, 185-195. https://doi.org/10.1016/j.applthermaleng.2014.12.036
[64]
Milena, A., Násner, L., Eduardo, E., Lora, S., Carlos, J., Palacio, E., Henrique, M., Camilo, J., Venturini, O. and Ratner, A. (2017) Refuse Derived Fuel (RDF) Production and Gasification in a Pilot Plant Integrated with an Otto Cycle ICE through Aspen plusTM Modelling: Thermodynamic and Economic Viability. Waste Management, 69, 187-201. https://doi.org/10.1016/j.wasman.2017.08.006
[65]
Chalermcharoenrat, S., Laohalidanond, K. and Kerdsuwan, S. (2015) Optimization of Combustion Behavior and Producer Gas Quality from Reclaimed Landfill through Densify RDF-Gasification. Energy Procedia, 79, 321-326. https://doi.org/10.1016/j.egypro.2015.11.496
[66]
Efika, E.C., Onwudili, J.A. and Williams, P.T. (2015) Products from the High Temperature Pyrolysis of RDF at Slow and Rapid Heating Rates. Journal of Analytical and Applied Pyrolysis, 112, 14-22. https://doi.org/10.1016/j.jaap.2015.01.004
[67]
Barba, D., Capocelli, M., Cornacchia, G. and Matera, D.A. (2016) Theoretical and Experimental Procedure for Scaling-Up RDF Gasifiers: The Gibbs Gradient Method. Fuel, 179, 60-70. https://doi.org/10.1016/j.fuel.2016.03.014
[68]
Materazzi, M., Lettieri, P., Taylor, R. and Chapman, C. (2016) Performance Analysis of RDF Gasification in a Two Stage Fluidized Bed-Plasma Process. Waste Management, 47, 256-266. https://doi.org/10.1016/j.wasman.2015.06.016
[69]
Cai, J., Zeng, R., Zheng, W., Wang, S., Han, J., Li, K., Luo, M. and Tang, X. (2021) Synergistic Effects of Co-Gasification of Municipal Solid Waste and Biomass in Fixed-Bed Gasifier. Process Safety and Environmental Protection, 148, 1-12. https://doi.org/10.1016/j.psep.2020.09.063
[70]
Hwang, I.-H., Kobayashi, J. and Kawamoto, K. (2014) Characterization of Products Obtained from Pyrolysis and Steam Gasification of Wood Waste, RDF, and RPF. Waste Management, 34, 402-410. https://doi.org/10.1016/j.wasman.2013.10.009
[71]
Materazzi, M., Lettieri, P., Mazzei, L., Taylor, R. and Chapman, C. (2013) Thermodynamic Modelling and Evaluation of a Two-Stage Thermal Process for Waste Gasification. Fuel, 108, 356-369. https://doi.org/10.1016/j.fuel.2013.02.037
[72]
Begum, S., Rasul, M.G., Akbar, D. and Cork, D. (2014) An Experimental and Numerical Investigation of Fluidized Bed Gasification of Solid Waste. Energies, 7, 43-61. https://doi.org/10.3390/en7010043
[73]
Rotter, V.S., Kost, T., Winkler, J. and Bilitewski, B. (2004) Material Flow Analysis of RDF-Production Processes. Waste Management, 24, 1005-1021. https://doi.org/10.1016/j.wasman.2004.07.015
[74]
Manser, A. and Keeling, A. (1996) Practical Handbook of Processing and Recycling Municipal Waste. CRC Press, Boca Raton.
[75]
Khosasaeng, T. and Suntivarakorn, R. (2017) Effect of Equivalence Ratio on an Efficiency of Single Throat Downdraft Gasifier Using RDF from Municipal Solid Waste. Energy Procedia, 138, 784-788. https://doi.org/10.1016/j.egypro.2017.10.066
[76]
Lorber, K. and Sarc, R. (2012) Waste to Energy by Preparation of Quality Controlled Solid Recovered Fuels (SRF). 4th International Conference on Environmental Technology and Knowledge Transfer, Hefei, 13-18.
[77]
Littlejohns, J.V., Butler, J., Luque, L., Kannangara, M. and Totolo, S. (2019) Analysis of the Performance of an Integrated Small-Scale Biomass Gasification System in a Canadian Context. Biomass Conversion and Biorefinery, 10, 311-323. https://doi.org/10.1007/s13399-019-00442-0
[78]
Hadi Jafari, P., Wingren, A., Hellstrom, J.G.I. and Gebart, B.R. (2020) Effect of Process Parameters on the Performance of an Air-Blown Entrained Flow Cyclone Gasifier. International Journal of Sustainable Energy, 39, 21-40. https://doi.org/10.1080/14786451.2019.1626858
[79]
Murakami, T., Asai, M. and Suzuki, Y. (2013) Optimized Approach of High Cold Gas Efficiency of Woody Biomass in a Fluidized Bed Gasifier with Triple-Beds. Journal of the Japanese Society for Experimental Mechanics, 13, s30-s34.
[80]
Heidenreich, S. and Foscolo, P.U. (2015) New Concepts in Biomass Gasification. Progress in Energy and Combustion Science, 46, 72-95. https://doi.org/10.1016/j.pecs.2014.06.002
[81]
Chen, G., Jamro, I.A., Samo, S.R., Wenga, T., Baloch, H.A., Yan, B. and Ma, W. (2020) Hydrogen-Rich Syngas Production from Municipal Solid Waste Gasification through the Application of Central Composite Design: An Optimization Study. International Journal of Hydrogen Energy, 45, 33260-33273. https://doi.org/10.1016/j.ijhydene.2020.09.118
[82]
Islam, M.W. (2020) Effect of Different Gasifying Agents (Steam, H2O2, Oxygen, CO2, and Air) on Gasification Parameters. International Journal of Hydrogen Energy, 45, 31760-31774. https://doi.org/10.1016/j.ijhydene.2020.09.002
[83]
Liu, B.Y.H., et al. (1984) Aerosol Problems in Coal Gasification Research. Journal of Aerosol Science, 15, 321-324.
[84]
Ramos, A. and Rouboa, A. (2020) Syngas Production Strategies from Biomass Gasification: Numerical Studies for Operational Conditions and Quality Indexes. Renewable Energy, 155, 1211-1221. https://doi.org/10.1016/j.renene.2020.03.158
[85]
Sebastiani, A., Macrì, D., Gallucci, K. and Materazzi, M. (2021) Steam-Oxygen Gasification of Refuse Derived Fuel in Fluidized Beds: Modelling and Pilot Plant Testing. Fuel Processing Technology, 216, Article ID: 106783. https://doi.org/10.1016/j.fuproc.2021.106783
[86]
Horton, S.R., Zhang, Y., Mohr, R., Petrocelli, F. and Klein, M.T. (2016) Implementation of a Molecular-Level Kinetic Model for Plasma-Arc Municipal Solid Waste Gasification. Energy and Fuels, 30, 7904-7915. https://doi.org/10.1021/acs.energyfuels.6b00899
[87]
Proll, T., Siefert, I.G., Friedl, A. and Hofbauer, H. (2005) Removal of NH3 from Biomass Gasification Producer Gas by Water Condensing in an Organic Solvent Scrubber. Industrial & Engineering Chemistry Research, 44, 1576-1584. https://doi.org/10.1021/ie049669v
[88]
Wang, S., Shan, R., Gu, J., Zhang, J. and Yuan, H. (2020) Pyrolysis Municipal Sludge Char Supported Fe/Ni Catalysts for Catalytic Reforming of Tar Model Compound. Fuel, 279, Article ID: 118494. https://doi.org/10.1016/j.fuel.2020.118494
[89]
Luque, R., Pineda, A., Colmenares, J.C., Campelo, J.M., Romero, A.A., Serrano-Riz, J.C., Cabeza, L.F. and Cot-Gores, J. (2012) Carbonaceous Residues from Biomass Gasification as Catalysts for Biodiesel Production. Journal of Natural Gas Chemistry, 21, 246-250. https://doi.org/10.1016/S1003-9953(11)60360-5
[90]
Vreugdenhil, B. (2010) Alkali Distribution for Low Temperature Gasification. ECN.
[91]
Habibi, R., Kopyscinski, J., Masnadi, M.S., Lam, J., Grace, J.R., Mims, C.A. and Hill, J.M. (2013) Co-Gasification of Biomass and Non-Biomass Feedstocks: Synergistic and Inhibition Effects of Switchgrass Mixed with Sub-Bituminous Coal and Fluid Coke during CO2 Gasification. Energy & Fuels, 27, 494-500. https://doi.org/10.1021/ef301567h
[92]
Robinson, T., Bronson, B., Gogolek, P. and Mehrani, P. (2017) Air-Blown Bubbling Fluidized Bed Co-Gasification of Woody Biomass and Refuse Derived Fuel. The Canadian Journal of Chemical Engineering, 95, 55-61. https://doi.org/10.1002/cjce.22641
[93]
Aigner, I., Pfeifer, C. and Hofbauer, H. (2011) Co-Gasification of Coal and Wood in a Dual Fluidized Bed Gasifier. Fuel, 90, 2404-2412. https://doi.org/10.1016/j.fuel.2011.03.024
[94]
Mallick, D., Mahanta, P. and Moholkar, V.S. (2017) Co-Gasification of Coal and Biomass Blends: Chemistry and Engineering. Fuel, 204, 106-128. https://doi.org/10.1016/j.fuel.2017.05.006
[95]
Mastellone, M.L., Zaccariello, L. and Arena, U. (2010) Co-Gasification of Coal, Plastic Waste and Wood in a Bubbling Fluidized Bed Reactor. Fuel, 89, 2991-3000. https://doi.org/10.1016/j.fuel.2010.05.019
[96]
Nobre, C., et al. (2019) Upgrading of Refuse Derived Fuel through Torrefaction and Carbonization: Evaluation of RDF Char Fuel Properties. Energy, 181, 66-76. https://doi.org/10.1016/j.energy.2019.05.105
[97]
Kobayashi, J., Kawamoto, K., Fukushima, R. and Tanaka, S. (2011) Woody Biomass and RPF Gasification Using Reforming Catalyst and Calcium Oxide. Chemosphere, 83, 1273-1278. https://doi.org/10.1016/j.chemosphere.2011.03.010