全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

糖尿病并发症中MCP-1发病机制及治疗的研究进展
Advances in the Pathogenesis and Treatment of MCP-1 in Diabetic Complications

DOI: 10.12677/ACM.2022.12111563, PP. 10856-10862

Keywords: 单核细胞趋化蛋白-1,糖尿病,糖尿病并发症,发病机制
Monocyte Chemoattractant Protein-1
, Diabetes, Diabetic Complications, Pathogenesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

糖尿病并发症是由于血糖控制不佳,糖尿病(DM)病程延长而导致多组织、多器官的慢性病变,致死致残率极高,严重危害人类健康。研究发现高糖环境下会引起单核细胞趋化蛋白-1 (MCP-1)的上调,使其在糖尿病中引发一系列炎症反应,导致糖尿病并发症的发生。因此了解MCP-1在糖尿病并发症中的发病机制以及了解通过抑制MCP-1治疗糖尿病并发症的研究现状,为积极治疗和有效干预糖尿病并发症的发生发展提供了更多方向。
The complications of diabetes mellitus are chronic lesions of multiple tissues and organs caused by poor blood glucose control and prolonged course of diabetes mellitus (DM), which has a high mortality and disability rate and seriously endangers human health. Studies have found that high glucose environment can lead to the upregulation of monocyte chemotactic protein-1 (MCP-1), which causes a series of inflammatory reactions in diabetes, leading to the occurrence of diabetic complications. Therefore, understanding the pathogenesis of MCP-1 in diabetic complications and the research status of MCP-1 inhibition in the treatment of diabetic complications will provide more directions for active treatment and effective intervention of the occurrence and development of di-abetic complications.

References

[1]  《国家基层糖尿病防治管理指南(2022)》发布[J]. 中医健康养生, 2022, 8(5): 2.
[2]  Wu, Y., Wu, G., Qi, X., et al. (2006) Protein Kinase C Beta Inhibitor LY333531 Attenuates Intercellular Adhesion Molecule-1 and Monocyte Chemotactic Protein-1 Expression in the Kidney in Diabetic Rats. Journal of Pharmacological Sciences, 101, 335-343.
https://doi.org/10.1254/jphs.FP0050896
[3]  Ihm, C.G., Park, J.K., Hong, S.P., et al. (1998) A High Glucose Concentration Stimulates the Expression of Monocyte Chemotactic Peptide 1 in Human Mesangial Cells. Nephron, 79, 33-37.
https://doi.org/10.1159/000044988
[4]  Haller, H., Bertram, A., Nadrowitz, F. and Menne, J. (2016) Mon-ocyte Chemoattractant Protein-1 and the Kidney. Current Opinion in Nephrology and Hypertension, 25, 42-49.
https://doi.org/10.1097/MNH.0000000000000186
[5]  Naruse, K., Ueno, M., Satoh, T., Nomiyama, H., Tei, H., Takeda, M., et al. (1996) A YAC Contig of the Human CC Chemokine Genes Clustered on Chromosome 17q11.2. Genomics, 34, 236-240.
https://doi.org/10.1006/geno.1996.0274
[6]  Yoshimura, T., Yuhki, N., Moore, S.K., Appella, E., Lerman, M.I., et al. (1989) Human Monocyte Chemoattractant Protein-1 (MCP-1). Full-Length cDNA Cloning, Expression in Mito-gen-Stimulated Blood Mononuclear Leukocytes, and Sequence Similarity to Mouse Competence Gene JE. FEBS Letters, 244, 487-493.
https://doi.org/10.1016/0014-5793(89)80590-3
[7]  López-Franco, O., Hernández-Vargas, P., Ortiz-Mu?oz, G., Sanjuán, G., Suzuki, Y., et al. (2006) Parthenolide Modulates the NF-kappaB-Mediated Inflammatory Responses in Ex-perimental Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1864-1870.
https://doi.org/10.1161/01.ATV.0000229659.94020.53
[8]  García-García, P.M., Getino-Melián, M.A., Dominguez-Pimentel, V. and Navarro-González, J.F. (2014) Inflammation in Diabetic Kidney Disease. World Journal of Diabetes, 5, 431-443.
https://doi.org/10.4239/wjd.v5.i4.431
[9]  Morii, T., Fujita, H., Narita, T., et al. (2003) Association of Monocyte Chemoattractant Protein-1 with Renal Tubular Damage in Diabetic Nephropathy. Journal of Diabetic Complications, 17, 11-15.
https://doi.org/10.1016/S1056-8727(02)00176-9
[10]  Han, S.Y., So, G.A., Jee, Y.H., et al. (2004) Effect of Ret-inoic Acid in Experimental Diabetic Nephropathy. Immunology & Cell Biology, 82, 568-576.
https://doi.org/10.1111/j.1440-1711.2004.01287.x
[11]  Yoon, J.J., Lee, Y.J., Lee, S.M., Kang, D.G. and Lee, H.S. (2015) Oryeongsan Suppressed High Glucose-Induced Mesangial Fibrosis. BMC Complementary and Alternative Medicine, 15, Article No. 30.
https://doi.org/10.1186/s12906-015-0542-6
[12]  Zhao, T., Sun, S., Zhang, H., et al. (2016) Therapeutic Effects of Tangshen Formula on Diabetic Nephropathy in Rats. PLOS ONE, 11, e0147693.
https://doi.org/10.1371/journal.pone.0147693
[13]  Chen, F.Q., Wei, G.Z., Zhou, Y., Ma, X.Y. and Wang, Q.Y. (2019) The Mechanism of miR-192 in Regulating High Glucose-Induced MCP-1 Expression in Rat Glomerular Mesangial Cells. Endocrine, Metabolic & Immune Disorders—Drug Targets, 19, 1055-1063.
https://doi.org/10.2174/1871530319666190301154640
[14]  Kanter, J.E., Kramer, F., Barnhart, S., et al. (2012) Di-abetes Promotes an Inflammatory Macrophage Phenotype and Atherosclerosis through acyl-CoA Synthetase 1. Proceedings of the National Academy of Sciences of the United States of America, 109, E715-E724.
https://doi.org/10.1073/pnas.1111600109
[15]  Su, N., Zhao, N., Wang, G., et al. (2018) Association of MCP-1 rs1024611 Polymorphism with Diabetic Foot Ulcers. Medicine (Baltimore), 97, e11232.
https://doi.org/10.1097/MD.0000000000011232
[16]  Afarideh, M., Ghanbari, P., Noshad, S., et al. (2016) Raised Serum 25-Hydroxyvitamin D Levels in Patients with Active Diabetic Foot Ulcers. British Journal of Nutrition, 115, 1938-1946.
https://doi.org/10.1017/S0007114516001094
[17]  Kasiewicz, L.N. and Whitehead, K.A. (2016) Si-lencing TNFα with Lipidoid Nanoparticles Downregulates both TNFα and MCP-1 in an in Vitro Co-Culture Model of Diabetic Foot Ulcers. Acta Biomaterialia, 32, 120-128.
https://doi.org/10.1016/j.actbio.2015.12.023
[18]  Lieth, E., Gardner, T.W., Barber, A.J. and Antonetti, D.A. (2000) Retinal Neurodegeneration: Early Pathology in Diabetes. Clinical & Experimental Ophthalmology, 28, 3-8.
https://doi.org/10.1046/j.1442-9071.2000.00222.x
[19]  Dong, N., Li, X., Xiao, L., Yu, W., Wang, B., et al. (2012) Upregulation of Retinal Neuronal MCP-1 in the Rodent Model of Diabetic Retinopathy and Its Function in Vitro. Inves-tigative Ophthalmology and Visual Science, 53, 7567-7575.
https://doi.org/10.1167/iovs.12-9446
[20]  Feng, C., Wang, X., Liu, T., Zhang, M., Xu, G. and Ni, Y. (2017) Ex-pression of CCL2 and Its Receptor in Activation and Migration of Microglia and Monocytes Induced by Photoreceptor Apoptosis. Molecular Vision, 23, 765-777.
[21]  Rangasamy, S., McGuire, P.G., Franco Nitta, C., Monickaraj, F., Oruganti, S.R. and Das, A. (2014) Chemokine Mediated Monocyte Trafficking into the Retina: Role of Inflammation in Alteration of the Blood-Retinal Barrier in Diabetic Retinopathy. PLOS ONE, 9, e108508.
https://doi.org/10.1371/journal.pone.0108508
[22]  Wei, J.C., Shi, Y.L. and Wang, Q. (2019) LncRNA ANRIL Knockdown Ameliorates Retinopathy in Diabetic Rats by Inhibiting the NF-κB Pathway. European Review for Medical and Pharmacological Sciences, 23, 7732-7739.
[23]  Yin, H., Fang, X., Ma, J., et al. (2016) Idiopathic Choroidal Neovascularization: Intraocular Inflammatory Cytokines and the Effect of Intravitreal Ranibizumab Treatment. Scientific Reports, 6, Article No. 31880.
https://doi.org/10.1038/srep31880
[24]  Vorob’eva, I.V. (2016) Sovremennye podkhody k rannei diagnostike, patogeneticheskomu lecheniyu diabeticheskoi retinopatii [Modern Approach to Early Diagnosis and Pathogenetic Treatment of Diabetic Retinopathy]. Vestnik Oftalmologii, 132, 60-67.
https://doi.org/10.17116/oftalma2016132560-67
[25]  Athithan, L., Gulsin, G.S., McCann, G.P. and Levelt, E. (2019) Diabetic Cardiomyopathy: Pathophysiology, Theories and Evidence to Date. World Journal of Diabetes, 10, 490-510.
https://doi.org/10.4239/wjd.v10.i10.490
[26]  Younce, C.W., Wang, K. and Kolattukudy, P.E. (2010) Hyperglycaemia-Induced Cardiomyocyte Death Is Mediated via MCP-1 Production and Induction of a Novel Zinc-Finger Protein MCPIP. Cardiovascular Research, 87, 665-674.
https://doi.org/10.1093/cvr/cvq102
[27]  Drimal, J., Knezl, V., Navarova, J., et al. (2008) Role of Inflammatory Cytokines and Chemoattractants in the Rat Model of Streptozotocin-Induced Diabetic Heart Failure. Endocrine Regu-lations, 42, 129-135.
[28]  Wang, L., Wu, H., Deng, Y., et al. (2021) FTZ Ameliorates Diabetic Cardiomyopathy by Inhibiting Inflammation and Cardiac Fibrosis in the Streptozotocin-Induced Model. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 5582567.
https://doi.org/10.1155/2021/5582567
[29]  Guo, X., Xue, M., Li, C.J., et al. (2016) Protective Effects of Triptolide on TLR4 Mediated Autoimmune and Inflammatory Response Induced Myocardial Fibrosis in Diabetic Cardiomyopathy. Journal of Ethnopharmacology, 193, 333-344.
https://doi.org/10.1016/j.jep.2016.08.029
[30]  Ma, J., Shi, M., Zhang, X., et al. (2018) GLP-1R Agonists Ame-liorate Peripheral Nerve Dysfunction and Inflammation via p38 MAPK/NF-κB Signaling Pathways in Streptozotocin-Induced Diabetic Rats. International Journal of Molecular Medicine, 41, 2977-2985.
https://doi.org/10.3892/ijmm.2018.3509
[31]  Adki, K.M. and Kulkarni, Y.A. (2021) Neuroprotective Effect of Paeonol in Streptozotocin-Induced Diabetes in Rats. Life Sciences, 271, Article ID: 119202.
https://doi.org/10.1016/j.lfs.2021.119202
[32]  Ferrari, S.L., Abrahamsen, B., Napoli, N., et al. (2018) Diagnosis and Management of Bone Fragility in Diabetes: An Emerging Challenge. Osteoporosis International, 29, 2585-2596.
https://doi.org/10.1007/s00198-018-4650-2
[33]  Yamamoto, M., Yamauchi, M. and Sugimoto, T. (2019) Prevalent Vertebral Fracture Is Dominantly Associated with Spinal Microstructural Deterioration Rather than Bone Mineral Density in Patients with Type 2 Diabetes Mellitus. PLOS ONE, 14, e0222571.
https://doi.org/10.1371/journal.pone.0222571
[34]  Kim, M.S., Day, C.J. and Morrison, N.A. (2005) MCP-1 Is In-duced by Receptor Activator of Nuclear Factor-{kappa}B Ligand, Promotes Human Osteoclast Fusion, and Rescues Granulocyte Macrophage Colony-Stimulating Factor Suppression of Osteoclast Formation. Journal of Biological Chem-istry, 280, 16163-16169.
https://doi.org/10.1074/jbc.M412713200
[35]  黄晶, 方丁, 王亮, 刘安宁, 张高生. 2型糖尿病合并骨质疏松症患者外周血中MCP-1表达水平及意义[J]. 中国卫生检验杂志, 2015, 25(7): 1013-1014.
[36]  梁洁, 宋文琦. MCP-1、血清铁与老年糖尿病性骨质疏松的相关性分析[J]. 临床合理用药杂志, 2016, 9(10): 111-112.
[37]  Qi, S.S., Shao, M.L., Sun, Z., et al. (2021) Chondroitin Sulfate Alleviates Diabetic Osteoporosis and Repairs Bone Micro-structure via Anti-Oxidation, Anti-Inflammation, and Regulating Bone Metabolism. Frontiers in Endocrinology (Lau-sanne), 12, Article ID: 759843.
https://doi.org/10.3389/fendo.2021.759843
[38]  Shen, C.L., Kaur, G., Wanders, D., et al. (2018) Annatto-Extracted Tocotrienols Improve Glucose Homeostasis and Bone Properties in High-Fat Di-et-Induced Type 2 Diabetic Mice by Decreasing the Inflammatory Response. Scientific Reports, 8, Article No. 11377.
https://doi.org/10.1038/s41598-018-29063-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133