全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于微结构的高温合金损伤演化模型及蠕变行为计算
Damage Evolution Model and Creep Behavior Calculation of Superalloy Based on Microstructure

DOI: 10.12677/MS.2022.1211138, PP. 1237-1250

Keywords: 镍基高温合金,蠕变,微结构,晶体塑性损伤模型
Nickel Base Superalloy
, Creep, Microstructure, Crystal Plastic Damage Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

镍基高温合金的微结构由以Ni为主的γ基体相和以Ni3Al为主的γ'强化相构成,经过一系列工艺处理之后,颗粒将会较为有序地排布在基体中,并在两相间形成共格两相界面。γ'强化相的含量和分布对于镍基高温合金的力学性能有决定性的影响,是镍基高温合金多尺度设计方法中“成分(工艺)–微结构–性能”链条上的重要微结构要素。本文针对镍基高温合金,基于高温合金的蠕变变形机制,建立了计及微结构因素的晶体塑性损伤模型,根据实验所的γ'含量、分布和蠕变曲线,对模型参数进行了标定,并基于此模型,对不同γ'含量和分布的合金进行了蠕变性能的预测,以期为合金的设计提供参考。
The microstructure of nickel base superalloy is dominated by matrix phase γ based Ni and strengthening phase γ' based Ni3Al, the particles will be orderly arranged in the matrix and form a coherent two-phase interface between the two phases. The strengthening phase γ' have a decisive impact on the mechanical properties of nickel base superalloys. It is an important microstructure element in the “Composition (process)-Microstructure-Performance” chain in the multi-scale design method of nickel base superalloys. Based on the creep deformation mechanism of nickel base superalloy, a crystal plastic damage model considering the changes of microstructure is established in this paper. The model parameters are calibrated based on the content, distribution and creep curve γ'. The creep properties of the alloy were predicted in order to provide a reference for the design of the alloy.

References

[1]  张剑. 镍基高温合金K447的热腐蚀与热疲劳性能的研究[D]: [硕士学位论文]. 沈阳: 东北大学, 2007.
[2]  孙晓峰, 金涛, 周亦胄, 等. 镍基单晶高温合金研究进展[J]. 中国材料进展, 2012, 31(12): 1-11.
[3]  丁青青, 李吉学, 张泽. 镍基单晶高温合金相界与界面位错的相互作用[J]. 电子显微学报, 2017, 36(2): 91-95.
[4]  Manonukul, A., Dunne, F.P.E. and Knowles, D. (2002) Physically-Based Model for Creep in Nickel-Base Superalloy C263 both Above and Below the Gamma Solvus. Acta Materialia, 50, 2917-2931.
[5]  
https://doi.org/10.1016/S1359-6454(02)00119-2
[6]  Dyson, D.F. and Osgerby, S. (1993) Modelling and Analysis of Creep Deformation and Fracture in a 1Cr0.5Mo Ferritic Steel. NPL Report NPL DMM(A)116, National Physical Laboratory, UK.
[7]  Gibbs, G.B. (1969) Thermodynamic Analysis of Dislocation Glide Controlled by Dispersed Local Obstacles. Materials Science and Engineering, 4, 313-328. https://doi.org/10.1016/0025-5416(69)90026-3
[8]  Granato, A.V., Lucke, K., Schlipf, J. and Teutonico, L.J. (1964) Entropy Factors for Thermally Activated Unpinning of Dislocations. Journal of Applied Physics, 35, 2732-2745. https://doi.org/10.1063/1.1713833
[9]  Zhang, Y.-H. and Knowles, D. (2001) Micromechanisms of Creep Deformation of C263 Superalloy. Interim Report 2/AT29, UTC. Department of Materials Science and Metallurgy, Cambridge University, UK.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133