|
Material Sciences 2022
BiOI纳米片/TiO2纳米纤维复合结构的构筑及其可见光催化性能研究
|
Abstract:
通过电纺技术与溶剂热方法的相结合,制备了BiOI纳米片/TiO2纳米纤维复合异质结构(BiOI/TiO2)。BiOI纳米薄片在电纺TiO2纳米纤维表面密集均匀地复合,所得复合结构具有较高的活性面积和分立结构,表现出较强的可见光催化活性。实验证明,BiOI/TiO2复合结构的可见光催化活性明显优于纯的TiO2纳米纤维和BiOI纳米薄片。此外,由于BiOI/TiO2复合结构所具有纳米纤维网毡结构,使其在污水处理领域展现了潜在的应用价值。
BiOI nanosheet/TiO2 nanofiber composite structure (BiOI/TiO2) was prepared by combining electrospinning technology with solvothermal method. BiOI nanosheets were densely and uniformly composite on the surface of electrospun TiO2 nanofibers, and the resulting composite structures had higher active area and discrete structure, showing a strong visible light catalytic activity. Experimental results showed that the visible light catalytic activity of BiOI/TiO2 composite structure was significantly better than that of pure TiO2 nanofibers and BiOI nanosheets. In addition, BiOI/TiO2 composite structure has potential application value in the field of wastewater treatment due to its nanofiber mesh structure.
[1] | Wang, W., Tadé, M.O., Shao, Z.P., et al. (2015) Research Progress of Perovskite Materials in Photocatalysis- and Photovoltaics-Related Energy Conversion and Environmental Treatment. Chemical Society Reviews, 44, 5371-5408. |
[2] | https://doi.org/10.1039/C5CS00113G |
[3] | Miao, F., Lu, N., Zhang, P., et al. (2019) Multidimension-Controllable Synthesis of Ant Nest-Structural Electrode Materials with Unique 3D Hierarchical Porous Features toward Electrochemical Applications. Advanced Functional Materials, 29, Article ID: 1808994. https://doi.org/10.1002/adfm.201808994 |
[4] | Liu, Y., Zhang, Z., Fang, Y., et al. (2019) IR-Driven Strong Plasmonic-Coupling on Ag Nanorices/W18O49 Nanowires Heterostructures for Photo/Thermal Synergistic Enhancement of H2 Evolution from Ammonia Borane. Applied Catalysis B: Environmental, 252, 164-173. https://doi.org/10.1016/j.apcatb.2019.04.035 |
[5] | Wei, R.B., Huang, Z.L., Gu, G.H., et al. (2018) Dual-Cocatalysts Decorated Rimous CdS Spheres Advancing Highly-Efficient Visible-Light Photocatalytic Hydrogen Production. Applied Catalysis B: Environmental, 231, 101-107. |
[6] | https://doi.org/10.1016/j.apcatb.2018.03.014 |
[7] | Shandilya, P., Mittal, D., Raizada, P., et al. (2018) Fabrication of Fluorine Doped Graphene and SmVO4 Based Dispersed and Adsorptive Photocatalyst for Abatement of Phenolic Compounds from Water and Bacterial Disinfection. Journal of Cleaner Production, 203, 386-399. https://doi.org/10.1016/j.jclepro.2018.08.271 |
[8] | Schneider, J., Matsuoka, M., Takeuchi, M., et al. (2014) Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114, 9919-9986. https://doi.org/10.1021/cr5001892 |
[9] | Liu, M., Li, H., Zeng, Y., et al. (2013) Anatase TiO2 Single Crystals with Dominant {001} Facets: Facile Fabrication from Ti Powders and Enhanced Photocatalytical Activity. Applied Surface Science, 274, 117-123. |
[10] | https://doi.org/10.1016/j.apsusc.2013.02.125 |
[11] | Liu, M., Piao, L., Ju, S., et al. (2010) Fabrication of Micrometer-Scale Spherical Titanate Nanotube Assemblies with High Specific Surface Area. Materials Letters, 64, 1204-1207. https://doi.org/10.1016/j.matlet.2010.02.051 |
[12] | Liu, M., Zhong, M., Li, H., et al. (2015) Facile Synthesis of Hollow TiO2 Single Nanocrystals with Improved Photocatalytic and Photoelectrochemical Activities. ChemPlusChem, 80, 688-696. https://doi.org/10.1002/cplu.201402368 |
[13] | Liu, M., Piao, L., Wang, W., et al. (2011) Hierarchical TiO2 Spheres: Facile Fabrication and Enhanced Photocatalysis. Rare Metals, 30, 153-156. https://doi.org/10.1007/s12598-011-0259-8 |
[14] | Liu, M., Sunada, K., Hashimoto, K., et al. (2015) Visible-Light Sensitive Cu(II)-TiO2 with Sustained Anti-Viral Activity for Efficient Indoor Environmental Remediation. Journal of Materials Chemistry A, 3, 17312-17319. |
[15] | https://doi.org/10.1039/C5TA03756E |
[16] | Sun, S., Wang, W., Zhang, L., et al. (2009) Visible Light-Induced Efficient Contaminant Removal by Bi5O7I. Environmental Science & Technology, 43, 2005-2010. https://doi.org/10.1021/es8032814 |
[17] | Chai, S.Y., Kim, Y.J., Jung, M.H., et al. (2009) Heterojunctioned BiOCl/Bi2O3, a New Visible Light Photocatalyst. Journal of Catalysis, 262, 144-149. https://doi.org/10.1016/j.jcat.2008.12.020 |
[18] | Cheng, H., Wang, W., Huang, B., et al. (2013) Tailoring AgI Nanoparticles for the Assembly of AgI/BiOI Hierarchical Hybrids with Size-Dependent Photocatalytic Activities. Journal of Materials Chemistry A, 1, 7131-7136. |
[19] | https://doi.org/10.1039/c3ta10849j |
[20] | Zhang, X., Ai, Z., Jia, F., et al. (2008) Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X = Cl, Br, I) Nanoplate Microspheres. Journal of Physical Chemistry C, 112, 747-753. |
[21] | https://doi.org/10.1021/jp077471t |
[22] | Li, Y., Wang, J., Liu, B., et al. (2011) BiOI-Sensitized TiO2 in Phenol Degradation: A Novel Efficient Semiconductor Sensitizer. Chemical Physics Letters, 508, 102-106. https://doi.org/10.1016/j.cplett.2011.04.019 |
[23] | Zhang, D. (2014) Heterostructural BiOI/TiO2 Composite with Highly Enhanced Visible Light Photocatalytic Performance. Russian Journal of Physical Chemistry A, 88, 2476-2485. https://doi.org/10.1134/S0036024414130044 |
[24] | Zhang, M., Shao, C., Guo, Z., et al. (2011) Hierarchical Nanostructures of Copper(II) Phthalocyanine on Electrospun TiO2 Nanofibers: Controllable Solvothermal Fabrication and Enhanced Visible Photocatalytic Properties. ACS Applied Materials & Interfaces, 3, 369-377. https://doi.org/10.1021/am100989a |